September 7, 1993
Similar papers 3
July 14, 1993
We obtain the high energy, small angle, 2-particle gravitational scattering amplitudes in topologically massive gravity (TMG) and its two non-dynamical constituents, Einstein and Chern--Simons gravity. We use 't Hooft's approach, formally equivalent to a leading order eikonal approximation: one of the particles is taken to scatter through the classical spacetime generated by the other, which is idealized to be lightlike. The required geometries are derived in all three models...
December 19, 2018
Following a semi-classical eikonal approach --- justified at transplanckian energies order by order in the deflection angle $\Theta_s\sim\frac{4G\sqrt{s}}{b} \equiv \frac{2 R}{b}$ --- we investigate the infrared features of gravitational scattering and radiation in four space-time dimensions, and we illustrate the factorization and cancellation of the infinite Coulomb phase for scattering and the eikonal resummation for radiation. As a consequence, both the eikonal phase $2\d...
October 4, 2005
The Einstein-Hilbert action has a bulk term and a surface term (which arises from integrating a four divergence). I show that one can obtain Einstein's equations from the surface term alone. This leads to: (i) a novel, completely self contained, perspective on gravity and (ii) a concrete mathematical framework in which the description of spacetime dynamics by Einstein's equations is similar to the description of a continuum solid in the thermodynamic limit.
October 28, 1994
The ultrarelativistic limit of the Kerr - Newman geometry is studied in detail. We find the gravitational shock wave background associated with this limit. We study the scattering of scalar fields in the gravitational shock wave geometries and compare this with the scattering by ultrarelativistic extended sources and with the scattering of fundamental strings. We also study planckian energy string collisions in flat spacetime as the scattering of a string in the effective c...
December 4, 2020
We study scattering on the black hole horizon in a partial wave basis, with an impact parameter of the order of the Schwarzschild radius or less. This resembles the strong gravity regime where quantum gravitational effects appear. The scattering is governed by an infinite number of virtual gravitons exchanged on the horizon. Remarkably, they can all be summed non-perturbatively in $\hbar$ and $\gamma \sim M_{Pl}/M_{BH}$. These results generalise those obtained from studying g...
June 22, 1999
This paper has been withdrawn by the author due to inconsistency of the considered working hypothesis. The consistent treatment is presented in the last publications of the author.
January 10, 2000
In this note we study an interesting effect of low energy gravity on photon-photon scattering at high energies.
May 19, 2008
We complement our earlier position-space exploration of a recently proposed S-matrix for transplanckian scattering by a momentum-space analysis. As in the previous paper, we restrict ourselves to the case of axisymmetric collisions of extended sources. Comparison between the two formulations allows for several cross-checks while showing their complementary advantages. In particular, the momentum-space formulation leads to an easier computation of the emitted-graviton spectra ...
September 1, 2016
A novel approach to the Effective One-Body description of gravitationally interacting two-body systems is introduced. This approach is based on the post-Minkowskian approximation scheme (perturbation theory in G, without assuming small velocities), and employs a new dictionary focussing on the functional dependence of the scattering angle on the total energy and the total angular momentum of the system. Using this approach, we prove to all orders in v/c two results that were ...
July 22, 2022
Hawking's free field theory is expected to break down after Page time. In previous work, we have shown that a primary dynamical reason for this breakdown is the dominance of graviton fluctuations of the horizon that mediate scattering processes. In this article, we present a toolbox for such `black hole scattering' computations. The toolbox comprises of explicit expressions for the graviton propagator near the horizon in an angular momentum basis for all angular momentum mode...