March 12, 1996
Similar papers 3
March 1, 2019
Electromagnetism in spacetime can be treated in terms of an analogue linear dielectric medium. In this paper, we discuss the gravitational analogue of the linear magnetoelectric effect, which can be found in multiferroic materials. While this is known to occur for metrics with non-zero mixed components, we show how it depends on the choice of spatial formalism for the electromagnetic fields, including in differences in tensor weight, and also on the choice of coordinate chart...
January 23, 2013
We propose a new point of view for interpreting Newton's and Einstein's theories of gravity. By taking inspiration from Continuum Mechanics and its treatment of anisotropies, we formulate new gravitational actions for modified theories of gravity. These models are simple and natural generalisations with many interesting properties. Above all, their precise form can, in principle, be determined experimentally.
November 12, 2024
We present the first model aimed at understanding how the Meissner effect in a young neutron star affects its macroscopic magnetic field. In this model, field expulsion occurs on a dynamical timescale, and is realised through two processes that occur at the onset of superconductivity: fluid motions causing the dragging of field lines, followed by magnetic reconnection. Focussing on magnetic fields weaker than the superconducting critical field, we show that complete Meissner ...
February 26, 2015
We derive the gravitonic Casimir effect with non-idealised boundary conditions. This allows the quantification of the gravitonic contribution to the Casimir effect from real bodies. We quantify the meagreness of the gravitonic Casimir effect in ordinary matter. We also quantify the enhanced effect produced by the speculated Heisenberg-Couloumb (H-C) effect in superconductors, thereby providing a test for the validity of the H-C theory, and consequently the existence of gravit...
May 25, 1999
We discuss the possible influence of gravity in the neutronization process, $p^+ e^- \to n \nu_e$, which is particularly important as a cooling mechanism of neutron stars. Our approach is semiclassical in the sense that leptonic fields are quantized on a classical background spacetime, while neutrons and protons are treated as excited and unexcited nucleon states, respectively. We expect gravity to have some influence wherever the energy content carried by the in-state is bar...
January 7, 2007
The analogy between general relativity and electromagnetism suggests that there is a galvano-gravitomagnetic effect, which is the gravitational analog of the Hall effect. This new effect takes place when a current carrying conductor is placed in a gravitomagnetic field and the conduction electrons moving inside the conductor are deflected transversally with respect to the current flow. In connection with this galvano-gravitomagnetic effect, we explore the possibility of using...
March 21, 2005
Recent developments in obtaining a detailed model for gamma ray bursts have shown the need for a deeper understanding of phenomena described by solutions of the Einstein-Maxwell equations, reviving interest in the behavior of charges close to a black hole. In particular a drastic difference has been found between the lines of force of a charged test particle in the fields of Schwarzschild and Reissner-Nordstrom black holes. This difference characterizes a general relativistic...
July 23, 2002
The second of the annual BritGrav meetings on current research in Gravitational Physics in Britain took place at the School of Mathematical Sciences of Queen Mary, University of London on June 10/11, 2002. 47 plenary talks of 12min duration were given. We make available the abstracts of the talks and the references to the electronic preprints at arXiv.org where they exist.
May 20, 1997
Can we give the graviton a mass? Does it even make sense to speak of a massive graviton? In this essay I shall answer these questions in the affirmative. I shall outline an alternative to Einstein Gravity that satisfies the Equivalence Principle and automatically passes all classical weak-field tests (GM/r approx 10^{-6}). It also passes medium-field tests (GM/r approx 1/5), but exhibits radically different strong-field behaviour (GM/r approx 1). Black holes in the usual sens...
March 23, 1999
The earlier paper, Inertial Mass, Its Mechanics - What It Is; How It Operates, developed the mechanics of inertial mass. The present paper is for the purpose of equivalently developing gravitation. The behavior of gravitation is well known, as described by Newton's Law of Gravitation. But just what gravitational mass is, how gravitational behavior comes about, what in material reality produces the effects of gravitational mass, has been little understood. The only extant hy...