March 7, 2013
We present an exhaustive, constructive, classification of the Calabi-Yau four-folds which can be described as complete intersections in products of projective spaces. A comprehensive list of 921,497 configuration matrices which represent all topologically distinct types of complete intersection Calabi-Yau four-folds is provided and can be downloaded at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/Cicy4folds/index.html . The manifolds have non-negative Euler character...
December 27, 1995
Reflexive polyhedra encode the combinatorial data for mirror pairs of Calabi-Yau hypersurfaces in toric varieties. We investigate the geometrical structures of circumscribed polytopes with a minimal number of facets and of inscribed polytopes with a minimal number of vertices. These objects, which constrain reflexive pairs of polyhedra from the interior and the exterior, can be described in terms of certain non-negative integral matrices. A major tool in the classification of...
May 30, 2002
We describe in purely combinatorial terms dual pairs of integral affine structures on spheres which come from the conjectural metric collapse of mirror families of Calabi-Yau toric hypersurfaces. The same structures arise on the base of a special Lagrangian torus fibration in the Strominger-Yau-Zaslow conjecture. We study the topological torus fibration in the large complex structure limit and show that it coincides with our combinatorial model.
October 30, 2017
Using a one-way Monte Carlo algorithm from several different starting points, we get an approximation to the distribution of toric threefold bases that can be used in four-dimensional F-theory compactification. We separate the threefold bases into "resolvable" ones where the Weierstrass polynomials $(f,g)$ can vanish to order (4,6) or higher on codimension-two loci and the "good" bases where these (4,6) loci are not allowed. A simple estimate suggests that the number of disti...
October 5, 1993
We consider families ${\cal F}(\Delta)$ consisting of complex $(n-1)$-dimensional projective algebraic compactifications of $\Delta$-regular affine hypersurfaces $Z_f$ defined by Laurent polynomials $f$ with a fixed $n$-dimensional Newton polyhedron $\Delta$ in $n$-dimensional algebraic torus ${\bf T} =({\bf C}^*)^n$. If the family ${\cal F}(\Delta)$ defined by a Newton polyhedron $\Delta$ consists of $(n-1)$-dimensional Calabi-Yau varieties, then the dual, or polar, polyhedr...
May 10, 2023
We develop tools that allow the systematic enumeration of inequivalent holomorphic orientifolds of Calabi-Yau hypersurfaces in toric fourfolds of arbitrary Hodge numbers. As examples, we construct an orientifold of the Calabi-Yau hypersurface with largest known Hodge number $h^{1,1}=491$, as well as an orientifold of a Calabi-Yau hypersurface with $h^{1,1}=243$ that yields a large orientifold-odd Hodge number $h^{1,1}_-=120$.
February 19, 2016
We present a list of Calabi-Yau threefolds known to us, and with holonomy groups that are precisely SU(3), rather than a subgroup, with small Hodge numbers, which we understand to be those manifolds with height $(h^{1,1}+h^{2,1})\le 24$. With the completion of a project to compute the Hodge numbers of free quotients of complete intersection Calabi-Yau threefolds, most of which were computed in Refs. [1-3] and the remainder in Ref. [4], many new points have been added to the t...
January 29, 2000
We study issues related to F-theory on Calabi-Yau fourfolds and its duality to heterotic theory for Calabi-Yau threefolds. We discuss principally fourfolds that are described by reflexive polyhedra and show how to read off some of the data for the heterotic theory from the polyhedron. We give a procedure for constructing examples with given gauge groups and describe some of these examples in detail. Interesting features arise when the local pieces are fitted into a global man...
August 20, 2014
We consider F-theory compactifications on genus-one fibered Calabi-Yau manifolds with their fibers realized as hypersurfaces in the toric varieties associated to the 16 reflexive 2D polyhedra. We present a base-independent analysis of the codimension one, two and three singularities of these fibrations. We use these geometric results to determine the gauge groups, matter representations, 6D matter multiplicities and 4D Yukawa couplings of the corresponding effective theories....
July 14, 2000
We present results from an inductive algebraic approach to the systematic construction and classification of the `lowest-level' CY3 spaces defined as zeroes of polynomial loci associated with reflexive polyhedra, derived from suitable vectors in complex projective spaces. These CY3 spaces may be sorted into `chains' obtained by combining lower-dimensional projective vectors classified previously. We analyze all the 4242 (259, 6, 1) two- (three-, four-, five-) vector chains, w...