April 6, 2001
In this paper we consider dynamical r-matrices over a nonabelian base. There are two main results. First, corresponding to a fat reductive decomposition of a Lie algebra $\frakg =\frakh \oplus \frakm$, we construct geometrically a non-degenerate triangular dynamical r-matrix using symplectic fibrations. Second, we prove that a triangular dynamical r-matrix $r: \frakh^* \lon \wedge^2 \frakg$ corresponds to a Poisson manifold $\frakh^* \times G$. A special type of quantizations of this Poisson manifold, called compatible star products in this paper, yields a generalized version of the quantum dynamical Yang-Baxter equation (or Gervais-Neveu-Felder equation). As a result, the quantization problem of a general dynamical r-matrix is proposed.
Similar papers 1
September 11, 2003
This paper is a continuation of [KS]. We develop the results of [KS] principally in two directions. First, we generalize the main result of [KS], the connection between the solutions of the classical dynamical Yang-Baxter equation and Poisson homogeneous spaces of Poisson Lie groups. We hope that now we present this result in its natural generality. Secondly, we propose a partial quantization of the results of [KS]. [KS] E. Karolinsky and A. Stolin, Classical dynamical r-ma...
June 20, 2006
In this paper we quantize symplectic dynamical r-matrices over a possibly nonabelian base. The proof is based on the fact that the existence of a star-product with a nice property (called strong invariance) is sufficient for the existence of a quantization. We also classify such quantizations and prove a quantum analogue of the classical composition formula for coboundary dynamical r-matrices.
May 1, 2000
We provide a general study for triangular dynamical r-matrices using Poisson geometry. We show that a triangular dynamical r-matrix always gives rise to a regular Poisson manifold. Using the Fedosov method, we prove that non-degenerate (i.e., the corresponding Poisson manifolds are symplectic) triangular dynamical r-matrices (over $ \frakh^* $ and valued in $\wedge^{2}\frakg$) are quantizable, and the quantization is classified by the relative Lie algebra cohomology $H^{2}(\f...
August 13, 1999
This paper contains a systematic and elementary introduction to a new area of the theory of quantum groups -- the theory of the classical and quantum dynamical Yang-Baxter equations. It arose from a minicourse given by the first author at MIT in the Spring of 1999, when the second author extended and improved his lecture notes of this minicourse. The quantum dynamical Yang-Baxter equation is a generalization of the ordinary quantum Yang-Baxter equation, considered in a phys...
July 1, 2002
This talk is inspired by two previous ICM talks, by V.Drinfeld (1986) and G.Felder (1994). Namely, one of the main ideas of Drinfeld's talk is that the quantum Yang-Baxter equation (QYBE), which is an important equation arising in quantum field theory and statistical mechanics, is best understood within the framework of Hopf algebras, or quantum groups. On the other hand, in Felder's talk, it is explained that another important equation of mathematical physics, the star-trian...
June 2, 2003
We develop a categorical approach to the dynamical Yang-Baxter equation (DYBE) for arbitrary Hopf algebras. In particular, we introduce the notion of a dynamical extension of a monoidal category, which provides a natural environment for quantum dynamical R-matrices, dynamical twists, {\em etc}. In this context, we define dynamical associative algebras and show that such algebras give quantizations of vector bundles on coadjoint orbits. We build a dynamical twist for any pair ...
July 8, 2014
In this paper, we explain how generalized dynamical r-matrices can be obtained by (quasi-)Poisson reduction. New examples of Poisson structures and Poisson groupoid actions naturally appear in this setting. As an application, we use a generalized dynamical r-matrix induced by the gauge fixing procedure to give a new finite dimensional description of the Atiyah-Bott symplectic structure on the moduli space of flat connections on a surface.
May 30, 2001
According to Etingof and Varchenko, the classical dynamical Yang-Baxter equation is a guarantee for the consistency of the Poisson bracket on certain Poisson-Lie groupoids. Here it is noticed that Dirac reductions of these Poisson manifolds give rise to a mapping from dynamical r-matrices on a pair $\L\subset \A$ to those on another pair $\K\subset \A$, where $\K\subset \L\subset \A$ is a chain of Lie algebras for which $\L$ admits a reductive decomposition as $\L=\K+\M$. Sev...
May 21, 2019
In this letter we construct ${\rm GL}_{NM}$-valued dynamical $R$-matrix by means of unitary skew-symmetric solution of the associative Yang-Baxter equation in the fundamental representation of ${\rm GL}_{N}$. In $N=1$ case the obtained answer reproduces the ${\rm GL}_{M}$-valued Felder's $R$-matrix, while in the $M=1$ case it provides the ${\rm GL}_{N}$ $R$-matrix of vertex type including the Baxter-Belavin's elliptic one and its degenerations.
August 16, 1997
The quantum dynamical Yang-Baxter (QDYB) equation is a useful generalization of the quantum Yang-Baxter (QYB) equation introduced by Gervais, Neveu, and Felder. The QDYB equation and its quasiclassical analogue (the classical dynamical Yang-Baxter equation) arise in several areas of mathematics and mathematical physics (conformal field theory, integrable systems, representation theory). The most interesting solution of the QDYB equation is the elliptic solution, discovered by...