April 6, 2001
Similar papers 2
June 17, 2022
The principles of the theory of quantum groups are reviewed from the point of view of the possibility of their use for deformations of symmetries in physical models. The R-matrix approach to the theory of quantum groups is discussed in detail and is taken as the basis of the quantization of classical Lie groups, as well as some Lie supergroups. We start by laying out the foundations of non-commutative and non-cocommutative Hopf algebras. Much attention has been paid to Hecke ...
November 27, 2015
In this paper we propose versions of the associative Yang-Baxter equation and higher order $R$-matrix identities which can be applied to quantum dynamical $R$-matrices. As is known quantum non-dynamical $R$-matrices of Baxter-Belavin type satisfy this equation. Together with unitarity condition and skew-symmetry it provides the quantum Yang-Baxter equation and a set of identities useful for different applications in integrable systems. The dynamical $R$-matrices satisfy the G...
November 21, 1991
We give a selfcontained introduction to the theory of quantum groups according to Drinfeld highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After having defined Poisson-Lie groups we study their relation to Lie-bi algebras and the classical Yang-Baxter equation. Then we explain in detail the concept of quantizatio...
November 13, 2003
We construct some classes of dynamical $r$-matrices over a nonabelian base, and quantize some of them by constructing dynamical (pseudo)twists in the sense of Xu. This way, we obtain quantizations of $r$-matrices obtained in earlier work of the second author with Schiffmann and Varchenko. A part of our construction may be viewed as a generalization of the Donin-Mudrov nonabelian fusion construction. We apply these results to the construction of equivariant star-products on Po...
June 17, 1997
Using recent results of P. Etingof and A. Varchenko on the Classical Dynamical Yang-Baxter equation, we reduce the classification of dynamical r-matrices r on a commutative subalgebra l of a Lie algebra g to a purely algebraic problem under some technical conditions on the symmetric part of r. Using this, we then classify all non skew-symmetric dynamical r-matrices when g is a simple Lie algebra and l a commutative subalgebra containing a regular semisimple element. This part...
September 13, 2001
It is well known that a classical dynamical $r$-matrix can be associated with every finite-dimensional self-dual Lie algebra $\G$ by the definition $R(\omega):= f(\mathrm{ad} \omega)$, where $\omega\in \G$ and $f$ is the holomorphic function given by $f(z)={1/2}\coth \frac{z}{2}-\frac{1}{z}$ for $z\in \C\setminus 2\pi i \Z^*$. We present a new, direct proof of the statement that this canonical $r$-matrix satisfies the modified classical dynamical Yang-Baxter equation on $\G$.
February 6, 2003
We quantize the Alekseev-Meinrenken solution r to the classical dynamical Yang-Baxter equation, associated to a Lie algebra g with an element t in S^2(g)^g. Namely, we construct a dynamical twist J with nonabelian base in the sense of P. Xu, whose quasiclassical limit is r-t/2. This twist gives rise to a dynamical quantum R-matrix, and also provides a quantization of the quasi-Poisson manifold and Poisson groupoid associated to r. The twist J is obtained by an appropriate ren...
June 13, 2022
In this note, we study possible $\mathcal{R}$-matrix constructions in the context of quiver Yangians and Yang-Baxter algebras. For generalized conifolds, we also discuss the relations between the quiver Yangians and some other Yangian algebras (and $\mathcal{W}$-algebras) in literature.
November 28, 2001
In this note we complement recent results on the exchange $r$-matrices appearing in the chiral WZNW model by providing a direct, purely finite-dimensional description of the relationship between the monodromy dependent 2-form that enters the chiral WZNW symplectic form and the exchange $r$-matrix that governs the corresponding Poisson brackets. We also develop the special case in which the exchange $r$-matrix becomes the `canonical' solution of the classical dynamical Yang-Ba...
February 3, 2010
Solutions of the classical dynamical Yang-Baxter equation on a Lie superalgebra are called super dynamical r-matrices. In this note we explicitly quantize zero-weight super dynamical r-matrices with zero coupling constant. We also answer some questions about super dynamical R-matrices. In particular we offer some support for one particular interpretation of the super Hecke condition.