May 19, 2014
We show that the complement of the coamoeba of a variety of codimension k+1 is k-convex, in the sense of Gromov and Henriques. This generalizes a result of Nisse for hypersurface coamoebas. We use this to show that the complement of the nonarchimedean coamoeba of a variety of codimension k+1 is k-convex.
March 21, 2013
This paper studies the curvatures of amoebas and real amoebas (i.e. essentially logarithmic curvatures of the complex and real parts of a real algebraic hypersurface) and of tropical and real tropical hypersurfaces. If V is a tropical hypersurface defined over the field of real Puiseux series, it has a real part RV which is a polyhedral complex. We define the total curvature of V (resp. RV) by using the total curvature of Amoebas and passing to the limit. We also define t...
March 14, 2024
Let $G$ be a connected reductive algebraic group over $\mathbb{C}$ with a maximal compact subgroup $K$. Let $G/H$ be a (quasi-affine) spherical homogeneous space. In the first part of the paper, following Akhiezer's definition of spherical functions, we introduce a $K$-invariant map $sLog_{\Gamma, t}: G/H \to \mathbb{R}^s$ which depends on a choice of a finite set $\Gamma$ of dominant weights and $s = |\Gamma|$. We call $sLog_{\Gamma, t}$ a spherical logarithm map. We show th...
January 6, 2017
For any curve $\mathcal{V}$ in a toric surface $X$, we study the critical locus $S(\mathcal{V})$ of the moment map $\mu$ from $\mathcal{V}$ to its compactified amoeba $\mu(\mathcal{V})$. We show that for curves $\mathcal{V}$ in a fixed complete linear system, the critical locus $S(\mathcal{V})$ is smooth apart from some real codimension $1$ walls. We then investigate the topological classification of pairs $(\mathcal{V},S(\mathcal{V}))$ when $\mathcal{V}$ and $S(\mathcal{V})$...
July 24, 2014
In this paper we study a $k$-dimensional analytic subvariety of the complex algebraic torus. We show that if its logarithmic limit set is a finite rational $(k-1)$-dimensional spherical polyhedron, then each irreducible component of the variety is algebraic. This gives a converse of a theorem of Bieri and Groves and generalizes a result proven in \cite{MN2-11}. More precisely, if the dimension of the ambient space is at least twice of the dimension of the generic analytic sub...
July 13, 2013
Given any complex Laurent polynomial $f$, $\mathrm{Amoeba}(f)$ is the image of its complex zero set under the coordinate-wise log absolute value map. We give an efficiently constructible polyhedral approximation, $\mathrm{ArchtTrop}(f)$, of $\mathrm{Amoeba}(f)$, and derive explicit upper and lower bounds, solely as a function of the number of monomial terms of $f$, for the Hausdorff distance between these two sets. We also show that deciding whether a given point lies in $\ma...
August 30, 2016
The amoeba of a Laurent polynomial is the image of the corresponding hypersurface under the coordinatewise log absolute value map. In this article, we demonstrate that a theoretical amoeba approximation method due to Purbhoo can be used efficiently in practice. To do this, we resolve the main bottleneck in Purbhoo's method by exploiting relations between cyclic resultants. We use the same approach to give an approximation of the Log preimage of the amoeba of a Laurent polynom...
March 1, 2024
We prove that the expected area of the amoeba of a complex plane curve of degree $d$ is less than $\displaystyle{3\ln(d)^2/2+9\ln(d)+9}$ and once rescaled by $\ln(d)^2$, is asymptotically bounded from below by $3/4$. In order to get this lower bound, given disjoint isometric embeddings of a bidisc of size $1/\sqrt{d}$ in the complex projective plane, we lower estimate the probability that one of them is a submanifold chart of a complex plane curve. It exponentially converges ...
April 14, 2014
We show that the amoeba of a complex algebraic variety defined as the solutions to a generic system of $n$ polynomials in $n$ variables has a finite basis. In other words, it is the intersection of finitely many hypersurface amoebas. Moreover, we give an upper bound of the size of the basis in terms of $n$ and the mixed volume $\mu$ of the Newton polytopes of the polynomial equations of the system. Also, we give an upper bound of the degree of the basis elements in terms of $...
February 5, 2016
We introduce the imaginary projection of a multivariate polynomial $f \in \mathbb{C}[\mathbf{z}]$ as the projection of the variety of $f$ onto its imaginary part, $\mathcal{I}(f) \ = \ \{\text{Im}(\mathbf{z}) \, : \, \mathbf{z} \in \mathcal{V}(f) \}$. Since a polynomial $f$ is stable if and only if $\mathcal{I}(f) \cap \mathbb{R}_{>0}^n \ = \ \emptyset$, the notion offers a novel geometric view underlying stability questions of polynomials. We show that the connected compon...