April 14, 2014
We show that the amoeba of a complex algebraic variety defined as the solutions to a generic system of $n$ polynomials in $n$ variables has a finite basis. In other words, it is the intersection of finitely many hypersurface amoebas. Moreover, we give an upper bound of the size of the basis in terms of $n$ and the mixed volume $\mu$ of the Newton polytopes of the polynomial equations of the system. Also, we give an upper bound of the degree of the basis elements in terms of $...
February 5, 2016
We introduce the imaginary projection of a multivariate polynomial $f \in \mathbb{C}[\mathbf{z}]$ as the projection of the variety of $f$ onto its imaginary part, $\mathcal{I}(f) \ = \ \{\text{Im}(\mathbf{z}) \, : \, \mathbf{z} \in \mathcal{V}(f) \}$. Since a polynomial $f$ is stable if and only if $\mathcal{I}(f) \cap \mathbb{R}_{>0}^n \ = \ \emptyset$, the notion offers a novel geometric view underlying stability questions of polynomials. We show that the connected compon...
June 16, 2007
We show that a conjecture of Einsiedler, Kapranov, and Lind on adelic amoebas of subvarieties of tori and their intersections with open halfspaces of complementary dimension is false for subvarieties of codimension greater than one that have degenerate projections to smaller dimensional tori. We prove a suitably modified version of the conjecture using algebraic methods, functoriality of tropicalization, and a theorem of Zhang on torsion points in subvarieties of tori.
August 11, 2011
The amoeba of a Laurent polynomial $f \in \C[z_1^{\pm 1},\ldots,z_n^{\pm 1}]$ is the image of its zero set $\mathcal{V}(f)$ under the log-absolute-value map. Understanding the space of amoebas (i.e., the decomposition of the space of all polynomials, say, with given support or Newton polytope, with regard to the existing complement components) is a widely open problem. In this paper we investigate the class of polynomials $f$ whose Newton polytope $\New(f)$ is a simplex and...
June 11, 2019
To every rational complex curve $C \subset (\mathbf{C}^\times)^n$ we associate a rational tropical curve $\Gamma \subset \mathbf{R}^n$ so that the amoeba $\mathcal{A}(C) \subset \mathbf{R}^n$ of $C$ is within a bounded distance from $\Gamma$. In accordance with the terminology introduced by Passare and Rullg{\aa}rd, we call $\Gamma$ the spine of $\mathcal{A}(C)$. We use spines to describe tropical limits of sequences of rational complex curves.
February 18, 2021
The group of isometries of the hyperbolic 3-space is one of the simplest non-commutative complex Lie groups. Its quotient by the maximal compact subgroup naturally maps it back to the hyperbolic space. Each fiber of this map is diffeomorphic to the real projective 3-space. The resulting map can be viewed as the simplest non-commutative counterpart of the amoeba map introduced, in the commutative setting, by Gelfand, Kapranov and Zelevinsky. The paper surveys basic propertie...
January 28, 2015
\textit{Harmonic amoebas} are generalisations of amoebas of algebraic curves immersed in complex tori. Introduced in \cite{Kri}, the consideration of such objects suggests to enlarge the scope of tropical geometry. In the present paper, we introduce the notion of harmonic morphisms from tropical curves to affine spaces and show how these morphisms can be systematically described as limits of families of harmonic amoeba maps on Riemann surfaces. It extends previous results abo...
November 3, 2009
This paper deals with coamoebas, that is, images under coordinatewise argument mappings, of certain quite particular plane algebraic curves. These curves are the zero sets of reduced A-discriminants of two variables. We consider the coamoeba primarily as a subset of the torus T^2=(R/2\pi Z)^2, but also as a subset of its covering space R^2, in which case the coamoeba consists of an infinite, doubly periodic image. In fact, it turns out to be natural to take multiplicities int...
December 13, 2022
Amoebae from tropical geometry and the Mahler measure from number theory play important roles in quiver gauge theories and dimer models. Their dependencies on the coefficients of the Newton polynomial closely resemble each other, and they are connected via the Ronkin function. Genetic symbolic regression methods are employed to extract the numerical relationships between the 2d and 3d amoebae components and the Mahler measure. We find that the volume of the bounded complement...
December 23, 2013
We derive efficient algorithms for coarse approximation of algebraic hypersurfaces, useful for estimating the distance between an input polynomial zero set and a given query point. Our methods work best on sparse polynomials of high degree (in any number of variables) but are nevertheless completely general. The underlying ideas, which we take the time to describe in an elementary way, come from tropical geometry. We thus reduce a hard algebraic problem to high-precision line...