February 21, 2002
We show that the Lawrence--Krammer representation is unitary. We explicitly present the non-singular matrix representing the sesquilinear pairing invariant under the action. We show that reversing the orientation of a braid is equivalent to the transposition of its Lawrence--Krammer matrix followed by a certain conjugation. As corollaries it is shown that the characteristic polynomial of the Lawrence--Krammer matrix is invariant under substitution of its variables with their inverses up to multiplication by units, and is not a complete conjugacy invariant for braids.
Similar papers 1
February 23, 2002
A non-singular sesquilinear form is constructed that is preserved by the Lawrence-Krammer representation. It is shown that if the polynomial variables q and t of the Lawrence-Krammer representation are chosen to be appropriate algebraically independant unit complex numbers, then the form is negative-definite Hermitian. Since unitary matrices diagonalize, the conjugacy class of a matrix in the unitary group is determined by its eigenvalues. It is shown that the eigenvalues of ...
February 16, 2000
A connection is made between the Krammer representation and the Birman-Murakami-Wenzl algebra. Inspired by a dimension argument, a basis is found for a certain irrep of the algebra, and relations which generate the matrices are found. Following a rescaling and change of parameters, the matrices are found to be identical to those of the Krammer representation. The two representations are thus the same, proving the irreducibility of one and the faithfulness of the other.
September 21, 2016
We show that the Lawrence--Krammer representation can be obtained as the quantization of the symmetric square of the Burau representation. This connection allows us to construct new representations of braid groups
August 3, 2010
The Lawrence-Krammer representation was used in $2000$ to show the linearity of the braid group. The problem had remained open for many years. The fact that the Lawrence-Krammer representation of the braid group is reducible for some complex values of its two parameters is now known, as well as the complete description of these values under some restrictions on one of the parameters. It is also known that when the representation is reducible, the action on a proper invariant ...
January 24, 2009
We show that the Lawrence-Krammer representation based on two parameters that was used by Bigelow and independently Krammer to show the linearity of the braid group is generically irreducible, but that when its parameters are specialized to some nonzero complex numbers, the representation is reducible. To do so, we construct a representation of the BMW algebra inside the Lawrence-Krammer space. As a representation of the braid group, this representation is equivalent to the L...
January 25, 2009
Given two nonzero complex parameters $l$ and $m$, we construct by the mean of knot theory a matrix representation of size $\chl$ of the BMW algebra of type $A_{n-1}$ with parameters $l$ and $m$ over the field $\Q(l,r)$, where $m=\unsurr-r$. As a representation of the braid group on $n$ strands, it is equivalent to the Lawrence-Krammer representation that was introduced by Lawrence and Krammer to show the linearity of the braid groups. We prove that the Lawrence-Krammer repres...
January 4, 2012
We show that the span of the variable $q$ in the Lawrence-Krammer-Bigelow representation matrix of a braid is equal to the twice of the dual Garside length of the braid, as was conjectured by Krammer. Our proof is close in spirit to Bigelow's geometric approach. The key observation is that the dual Garside length of a braid can be read off a certain labeling of its curve diagram.
June 30, 2014
We give a 3-page description of the Gassner invariant / representation of braids / pure braids, along with a description and a proof of its unitarity property.
September 4, 2005
The Lawrence representation $L_{n,m}$ is a family of homological representation of the braid group $B_n$, which specializes to the reduced Burau and the Lawrence-Krammer representation when $m$ is 1 and 2. In this article we show that the Lawrence representation is faithful for $m \geq 2$.
April 15, 2003
In this paper we survey some work on representations of $B_n$ given by the induced action on a homology module of some space. One of these, called the Lawrence-Krammer representation, recently came to prominence when it was shown to be faithful for all $n$. We will outline the methods used, applying them to a closely related representation for which the proof is slightly easier. The main tool is the Blanchfield pairing, a sesquilinear pairing between elements of relative homo...