April 4, 2002
The Lawrence-Krammer representation of the braid groups recently came to prominence when it was shown to be faithful by myself and Krammer. It is an action of the braid group on a certain homology module $H_2(\tilde{C})$ over the ring of Laurent polynomials in $q$ and $t$. In this paper we describe some surfaces in $\tilde{C}$ representing elements of homology. We use these to give a new proof that $H_2(\tilde{C})$ is a free module. We also show that the $(n-2,2)$ representat...
November 16, 2001
A very popular problem on braid groups has recently been solved by Bigelow and Krammer, namely, they have found a faithful linear representation for the braid group B_n. In their papers, Bigelow and Krammer suggested that their representation is the monodromy representation of a certain fibration. Our goal in this paper is to understand this monodromy representation using standard tools from the theory of hyperplane arrangements. In particular, we prove that the representatio...
May 23, 2012
We show that Lawrence's representation and linear representations from quantum sl_2 called generic highest weight vectors detect the dual Garside length of braids in a simple and natural way. That is, by expressing a representation as a matrix over a Laurent polynomial ring using certain natural basis, the span of the variable is equal to the constant multiples of the dual Garside length.
September 28, 2021
Let $C_n$ be the group of conjugating automorphisms. We study the representation $\rho$ of $C_n$, an extension of Lawrence-Krammer representation of the braid group $B_n$, defined by Valerij G. Bardakov. As Bardakov proved that the representation $\rho$ is unfaithful for $n \geq 5$, the cases $n=3,4$ remain open. In our work, we make attempts towards the faithfulness of $\rho$ in the case $n=3$.
February 6, 2005
This work presents an approach towards the representation theory of the braid groups $B_n$. We focus on finite-dimensional representations over the field of Laurent series which can be obtained from representations of infinitesimal braids, with the help of Drinfeld associators. We set a dictionary between representation-theoretic properties of these two structures, and tools to describe the representations thus obtained. We give an explanation for the frequent apparition of u...
May 28, 2008
We characterize unitary representations of braid groups $B_n$ of degree linear in $n$ and finite images of such representations of degree exponential in $n$.
October 17, 2008
It is known that the Lawrence-Krammer representation of the Artin group of type $A_{n-1}$ based on the two parameters $t$ and $q$ that was used by Krammer and independently by Bigelow to show the linearity of the braid group on $n$ strands is generically irreducible. Here, we recover this result and show further that for some complex specializations of the parameters the representation is reducible. We give all the values of the parameters for which the representation is redu...
November 4, 2014
When Daan Krammer and Stephen Bigelow independently proved that braid groups are linear, they used the Lawrence-Krammer-Bigelow representation for generic values of its variables q and t. The t variable is closely connected to the traditional Garside structure of the braid group and plays a major role in Krammer's algebraic proof. The q variable, associated with the dual Garside structure of the braid group, has received less attention. In this article we give a geometric i...
July 8, 2021
In the present paper we study structural aspects of certain quotients of braid groups and virtual braid groups. In particular, we construct and study linear representations $B_n\to {\rm GL}_{n(n-1)/2}\left(\mathbb{Z}[t^{\pm1}]\right)$, $VB_n\to {\rm GL}_{n(n-1)/2}\left(\mathbb{Z}[t^{\pm1}, t_1^{\pm1},t_2^{\pm1},\ldots, t_{n-1}^{\pm1}]\right)$ which are connected with the famous Lawrence-Bigelow-Krammer representation. It turns out that these representations are faithful repre...
June 27, 2000
We give an exposition of the work of Bigelow and Krammer who proved that the Artin braid groups are linear.