August 29, 2018
A new construction of the associahedron was recently given by Arkani-Hamed, Bai, He, and Yan in connection with the physics of scattering amplitudes. We show that their construction (suitably understood) can be applied to construct generalized associahedra of any simply-laced Dynkin type. Unexpectedly, we also show that this same construction produces Newton polytopes for all the $F$-polynomials of the corresponding cluster algebras. In addition, we show that the toric variet...
August 20, 2020
This is a preliminary draft of Chapter 6 of our forthcoming textbook "Introduction to Cluster Algebras." Chapters 1-3 have been posted as arXiv:1608.05735. Chapters 4-5 have been posted as arXiv:1707.07190. This installment contains: Chapter 6. Cluster structures in commutative rings
January 20, 2008
This is a concise introduction to Fomin-Zelevinsky's cluster algebras and their links with the representation theory of quivers in the acyclic case. We review the definition of cluster algebras (geometric, without coefficients), construct the cluster category and present the bijection between cluster variables and rigid indecomposable objects of the cluster category.
January 28, 2012
We introduce a category of cluster algebras with fixed initial seeds. This category has countable coproducts, which can be constructed combinatorially, but no products. We characterise isomorphisms and monomorphisms in this category and provide combinatorial methods for constructing special classes of monomorphisms and epimorphisms. In the case of cluster algebras from surfaces, we describe interactions between this category and the geometry of the surfaces.
April 19, 2008
We use the representation theory of preprojective algebras to construct and study certain cluster algebras related to semisimple algebraic groups.
November 10, 2004
Cluster algebras were introduced by S. Fomin and A. Zelevinsky in connection with dual canonical bases. To a cluster algebra of simply laced Dynkin type one can associate the cluster category. Any cluster of the cluster algebra corresponds to a tilting object in the cluster category. The cluster tilted algebra is the algebra of endomorphisms of that tilting object. Viewing the cluster tilted algebra as a path algebra of a quiver with relations, we prove in this paper that the...
July 2, 2013
This paper develops techniques for producing presentations of upper cluster algebras. These techniques are suited to computer implementation, and will always succeed when the upper cluster algebra is totally coprime and finitely generated. We include several examples of presentations produced by these methods.
November 10, 2003
This paper demonstrates that the homogeneous coordinate ring of the Grassmannian $\Bbb{G}(k,n)$ is a {\it cluster algebra of geometric type} - as defined by S. Fomin and A. Zelevinsky. Grassmannians having {\it finite cluster type} are classified and the associated cluster variables are studied in connection with the geometry of configurations of points in $\Bbb{R}\Bbb{P}^2$.
October 27, 2015
The classification of Grassmannian cluster algebras resembles that of regular polygonal tilings. We conjecture that this resemblance may indicate a deeper connection between these seemingly unrelated structures.
December 29, 2010
We give an introduction to the theory of cluster categories and cluster tilted algebras. We include some background on the theory of cluster algebras, and discuss the interplay with cluster categories and cluster tilted algebras.