February 17, 2004
Similar papers 5
September 10, 2021
We prove a new class of low-energy decompositions which, amongst other consequences, imply that any finite set $A$ of integers may be written as $A = B \cup C$, where $B$ and $C$ are disjoint sets satisfying \[ |\{ (b_1, \dots, b_{2s}) \in B^{2s} \ | \ b_1 + \dots + b_{s} = b_{s+1} + \dots + b_{2s}\}| \ll_{s} |B|^{2s - (\log \log s)^{1/2 - o(1)}} \] and \[ |\{ (c_1, \dots, c_{2s}) \in C^{2s} \ | \ c_1 \dots c_{s} = c_{s+1} \dots c_{2s} \}| \ll_{s} |C|^{2s - (\log \log s)^{1/2...
August 25, 2022
Let $\left\{a_1, \dots, a_n\right\} \subset \mathbb{N}$ be a set of positive integers, $a_n$ denoting the largest element, so that for any two of the $2^n$ subsets the sum of all elements is distinct. Erd\H{o}s asked whether this implies $a_n \geq c \cdot 2^n$ for some universal $c>0$. We prove, slightly extending a result of Elkies, that for any $a_1, \dots, a_n \in \mathbb{R}_{>0}$ $$ \int_{\mathbb{R}} \left( \frac{\sin{ x}}{ x} \right)^2 \prod_{i=1}^{n} \cos{( a_i x)^2} dx...
February 26, 2007
Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a non-empty subset of $\mathbb{F}_p.$ In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of $\max\{|A+A|, |AA|\}.$ In particular, our result implies that if $1<|A|\le p^{7/13}(\log p)^{-4/13},$ then $$ \max\{|A+A|, |AA|\}\gg \frac{|A|^{15/14}}{(\log|A|)^{2/7}} . $$
July 12, 2009
Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a nonempty subset of $\mathbb{F}_p$. In this paper we show that if $|A|\preceq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succeq|A|^{13/12};\] if $|A|\succeq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succapprox \min\{|A|^{13/12}(\frac{|A|}{p^{0.5}})^{1/12},|A|(\frac{p}{|A|})^{1/11}\}.\] These results slightly improve the estimates of Bourgain-Garaev and Shen. Sum-product estimates on differ...
October 14, 2009
Here we give a short survey of our new results. References to the complete proofs can be found in the text of this article and in the litterature.
February 24, 2014
A variation on the sum-product problem seeks to show that a set which is defined by additive and multiplicative operations will always be large. In this paper, we prove new results of this type. In particular, we show that for any finite set $A$ of positive real numbers, it is true that $$\left|\left\{\frac{a+b}{c+d}:a,b,c,d\in{A}\right\}\right|\geq{2|A|^2-1}.$$ As a consequence of this result, it is also established that $$|4^{k-1}A^{(k)}|:=|\underbrace{\underbrace{A\cdots{A...
November 23, 2020
For $p$ being a large prime number, and $A \subset \mathbb{F}_p$ we prove the following: $(i)$ If $A(A+A)$ does not cover all nonzero residues in $\mathbb{F}_p$, then $|A| < p/8 + o(p)$. $(ii)$ If $A$ is both sum-free and satisfies $A = A^*$, then $|A| < p/9 + o(p)$. $(iii)$ If $|A| \gg \frac{\log\log{p}}{\sqrt{\log{p}}}p$, then $|A + A^*| \geqslant (1 - o(1))\min(2\sqrt{|A|p}, p)$. Here the constants $1/8$, $1/9$, and $2$ are the best possible. The proof involves \em...
March 1, 2018
In this paper we show that every set $A \subset \mathbb{N}$ with positive density contains $B+C$ for some pair $B,C$ of infinite subsets of $\mathbb{N}$, settling a conjecture of Erd\H{o}s. The proof features two different decompositions of an arbitrary bounded sequence into a structured component and a pseudo-random component. Our methods are quite general, allowing us to prove a version of this conjecture for countable amenable groups.
April 16, 2003
Let q be a prime, A be a subset of a finite field $F=\Bbb Z/q\Bbb Z$, $|A|<\sqrt{|F|}$. We prove the estimate $\max(|A+A|,|A\cdot A|)\ge c|A|^{1+\epsilon}$ for some $\epsilon>0$ and c>0. This extends the result of J. Bourgain, N. Katz, and T. Tao.
October 27, 2023
This is a survey of old and new problems and results in additive number theory.