February 17, 2004
Similar papers 4
November 22, 2011
In this paper we further study the relationship between convexity and additive growth, building on the work of Schoen and Shkredov (\cite{SS}) to get some improvements to earlier results of Elekes, Nathanson and Ruzsa (\cite{ENR}). In particular, we show that for any finite set $A\subset{\mathbb{R}}$ and any strictly convex or concave function $f$, \[|A+f(A)|\gg{\frac{|A|^{24/19}}{(\log|A|)^{2/19}}}\] and \[\max\{|A-A|,\ |f(A)+f(A)|\}\gg{\frac{|A|^{14/11}}{(\log|A|)^{2/11}}}....
May 23, 2018
In this paper we prove some results on sum-product estimates over arbitrary finite fields. More precisely, we show that for sufficiently small sets $A\subset \mathbb{F}_q$ we have \[|(A-A)^2+(A-A)^2|\gg |A|^{1+\frac{1}{21}}.\] This can be viewed as the Erd\H{o}s distinct distances problem for Cartesian product sets over arbitrary finite fields. We also prove that \[\max\{|A+A|, |A^2+A^2|\}\gg |A|^{1+\frac{1}{42}}, ~|A+A^2|\gg |A|^{1+\frac{1}{84}}.\]
May 15, 2022
We develop the theory of the additive dimension ${\rm dim} (A)$, i.e. the size of a maximal dissociated subset of a set $A$. It was shown that the additive dimension is closely connected with the growth of higher sumsets $nA$ of our set $A$. We apply this approach to demonstrate that for any small multiplicative subgroup $\Gamma$ the sequence $|n\Gamma|$ grows very fast. Also, we obtain a series of applications to the sum--product phenomenon and to the Balog--Wooley decomposi...
May 9, 2017
For a set $A\subseteq \mathbb{N}$ and $n\in \mathbb{N}$, let $R_A(n)$ denote the number of ordered pairs $(a,a')\in A\times A$ such that $a+a'=n$. The celebrated Erd\H{o}s-Tur\'an conjecture says that, if $R_A(n)\ge 1$ for all sufficiently large integers $n$, then the representation function $R_A(n)$ cannot be bounded. For any positive integer $m$, Ruzsa's number $R_m$ is defined to be the least positive integer $r$ such that there exists a set $A\subseteq \mathbb{Z}_m$ with ...
June 5, 2007
Let $\mathbb{F}_p$ be the field of a prime order $p.$ It is known that for any integer $N\in [1,p]$ one can construct a subset $A\subset\mathbb{F}_p$ with $|A|= N$ such that $$ \max\{|A+A|, |AA|\}\ll p^{1/2}|A|^{1/2}. $$ In the present paper we prove that if $A\subset \mathbb{F}_p$ with $|A|>p^{2/3},$ then $$ \max\{|A+A|, |AA|\}\gg p^{1/2}|A|^{1/2}. $$
July 29, 2018
Let $\mathbb{F}_q$ be a finite field of order $q$, where $q$ is a power of a prime. For a set $A \subset \mathbb{F}_q$, under certain structural restrictions, we prove a new explicit lower bound on the size of the product set $A(A + 1)$. Our result improves on the previous best known bound due to Zhelezov and holds under more relaxed restrictions.
October 27, 2024
The expansion of bivariate polynomials is well-understood for sets with a linear-sized product set. In contrast, not much is known for sets with small sumset. In this work, we provide expansion bounds for polynomials of the form $f(x, y) = g(x + p(y)) + h(y)$ for sets with small sumset. In particular, we prove that when $|A|$, $|B|$, $|A + A|$, and $|B + B|$ are not too far apart, for every $\varepsilon > 0$ we have \[|f(A, B)| = \Omega\left(\frac{|A|^{256/121 - \varepsilon}|...
July 29, 2018
In this paper we obtain a new sum-product estimate in prime fields. In particular, we show that if $A\subseteq \mathbb{F}_p$ satisfies $|A|\le p^{64/117}$ then $$ \max\{|A\pm A|, |AA|\} \gtrsim |A|^{39/32}. $$ Our argument builds on and improves some recent results of Shakan and Shkredov which use the eigenvalue method to reduce to estimating a fourth moment energy and the additive energy $E^+(P)$ of some subset $P\subseteq A+A$. Our main novelty comes from reducing the estim...
April 4, 2009
In the present paper we show that if A is a set of n real numbers, and the product set A.A has at most n^(1+c) elements, then the k-fold sumset kA has at least n^(log(k/2)/2 log 2 + 1/2 - f_k(c)) elements, where f_k(c) -> 0 as c -> 0. We believe that the methods in this paper might lead to a much stronger result; indeed, using a result of Trevor Wooley on Vinogradov's Mean Value Theorem and the Tarry-Escott Problem, we show that if |A.A| < n^(1+c), then |k(A.A)| > n^(Omega((k...
February 18, 2018
In their seminal paper Erd\H{o}s and Szemer\'edi formulated conjectures on the size of sumset and product set of integers. The strongest form of their conjecture is about sums and products along the edges of a graph. In this paper we show that this strong form of the Erd\H{o}s-Szemer\'edi conjecture does not hold. We give upper and lower bounds on the cardinalities of sumsets, product sets and ratio sets along the edges of graphs.