August 11, 2004
Similar papers 4
February 6, 2025
Inverse reinforcement learning is the problem of inferring a reward function from an optimal policy. In this work, it is assumed that the reward is expressed as a reward machine whose transitions depend on atomic propositions associated with the state of a Markov Decision Process (MDP). Our goal is to identify the true reward machine using finite information. To this end, we first introduce the notion of a prefix tree policy which associates a distribution of actions to each ...
January 31, 2024
In this paper, we study the remote estimation problem of a Markov process over a channel with a cost. We formulate this problem as an infinite horizon optimization problem with two players, i.e., a sensor and a monitor, that have distinct information, and with a reward function that takes into account both the communication cost and the estimation quality. We show that the main challenge in solving this problem is associated with the consideration of implicit information, i.e...
May 7, 2017
We propose a new reinforcement learning algorithm for partially observable Markov decision processes (POMDP) based on spectral decomposition methods. While spectral methods have been previously employed for consistent learning of (passive) latent variable models such as hidden Markov models, POMDPs are more challenging since the learner interacts with the environment and possibly changes the future observations in the process. We devise a learning algorithm running through ep...
May 27, 2022
We consider probabilistic systems with hidden state and unobservable transitions, an extension of Hidden Markov Models (HMMs) that in particular admits unobservable {\epsilon}-transitions (also called null transitions), allowing state changes of which the observer is unaware. Due to the presence of {\epsilon}-loops this additional feature complicates the theory and requires to carefully set up the corresponding probability space and random variables. In particular we present ...
May 11, 2018
In recent years, reinforcement learning has achieved many remarkable successes due to the growing adoption of deep learning techniques and the rapid growth in computing power. Nevertheless, it is well-known that flat reinforcement learning algorithms are often not able to learn well and data-efficient in tasks having hierarchical structures, e.g. consisting of multiple subtasks. Hierarchical reinforcement learning is a principled approach that is able to tackle these challeng...
December 25, 2008
General purpose intelligent learning agents cycle through (complex,non-MDP) sequences of observations, actions, and rewards. On the other hand, reinforcement learning is well-developed for small finite state Markov Decision Processes (MDPs). So far it is an art performed by human designers to extract the right state representation out of the bare observations, i.e. to reduce the agent setup to the MDP framework. Before we can think of mechanizing this search for suitable MDPs...
December 3, 2018
Markov networks are widely used in many Machine Learning applications including natural language processing, computer vision, and bioinformatics . Learning Markov networks have many complications ranging from intractable computations involved to the possibility of learning a model with a huge number of parameters. In this report, we provide a computationally tractable greedy heuristic for learning Markov networks structure. The proposed heuristic results in a model with a lim...
December 7, 2019
There are over 15 distinct communities that work in the general area of sequential decisions and information, often referred to as decisions under uncertainty or stochastic optimization. We focus on two of the most important fields: stochastic optimal control, with its roots in deterministic optimal control, and reinforcement learning, with its roots in Markov decision processes. Building on prior work, we describe a unified framework that covers all 15 different communities,...
June 12, 2023
In the field of decision trees, most previous studies have difficulty ensuring the statistical optimality of a prediction of new data and suffer from overfitting because trees are usually used only to represent prediction functions to be constructed from given data. In contrast, some studies, including this paper, used the trees to represent stochastic data observation processes behind given data. Moreover, they derived the statistically optimal prediction, which is robust ag...
January 23, 2013
Reactive (memoryless) policies are sufficient in completely observable Markov decision processes (MDPs), but some kind of memory is usually necessary for optimal control of a partially observable MDP. Policies with finite memory can be represented as finite-state automata. In this paper, we extend Baird and Moore's VAPS algorithm to the problem of learning general finite-state automata. Because it performs stochastic gradient descent, this algorithm can be shown to converge t...