March 3, 2006
Similar papers 4
December 21, 2023
We propose a novel Bayesian methodology for inference in functional linear and logistic regression models based on the theory of reproducing kernel Hilbert spaces (RKHS's). These models build upon the RKHS associated with the covariance function of the underlying stochastic process, and can be viewed as a finite-dimensional approximation to the classical functional regression paradigm. The corresponding functional model is determined by a function living on a dense subspace o...
December 15, 2019
Functional data analysis tools, such as function-on-function regression models, have received considerable attention in various scientific fields because of their observed high-dimensional and complex data structures. Several statistical procedures, including least squares, maximum likelihood, and maximum penalized likelihood, have been proposed to estimate such function-on-function regression models. However, these estimation techniques produce unstable estimates in the case...
May 10, 2005
We consider the prediction problem of a continuous-time stochastic process on an entire time-interval in terms of its recent past. The approach we adopt is based on functional kernel nonparametric regression estimation techniques where observations are segments of the observed process considered as curves. These curves are assumed to lie within a space of possibly inhomogeneous functions, and the discretized times series dataset consists of a relatively small, compared to the...
January 5, 2024
With the rapid development of deep learning in various fields of science and technology, such as speech recognition, image classification, and natural language processing, recently it is also widely applied in the functional data analysis (FDA) with some empirical success. However, due to the infinite dimensional input, we need a powerful dimension reduction method for functional learning tasks, especially for the nonlinear functional regression. In this paper, based on the i...
October 2, 2023
Stochastic approximation (SA) is a powerful and scalable computational method for iteratively estimating the solution of optimization problems in the presence of randomness, particularly well-suited for large-scale and streaming data settings. In this work, we propose a theoretical framework for stochastic approximation (SA) applied to non-parametric least squares in reproducing kernel Hilbert spaces (RKHS), enabling online statistical inference in non-parametric regression m...
August 16, 2007
With modern technology development, functional data are being observed frequently in many scientific fields. A popular method for analyzing such functional data is ``smoothing first, then estimation.'' That is, statistical inference such as estimation and hypothesis testing about functional data is conducted based on the substitution of the underlying individual functions by their reconstructions obtained by one smoothing technique or another. However, little is known about t...
December 6, 2007
Consider a Gaussian nonparametric regression problem having both an unknown mean function and unknown variance function. This article presents a class of difference-based kernel estimators for the variance function. Optimal convergence rates that are uniform over broad functional classes and bandwidths are fully characterized, and asymptotic normality is also established. We also show that for suitable asymptotic formulations our estimators achieve the minimax rate.
December 17, 2008
This article introduces a non parametric warping model for functional data. When the outcome of an experiment is a sample of curves, data can be seen as realizations of a stochastic process, which takes into account the small variations between the different observed curves. The aim of this work is to define a mean pattern which represents the main behaviour of the set of all the realizations. So we define the structural expectation of the underlying stochastic function. Then...
February 17, 2024
This paper focuses on a semiparametric regression model in which the response variable is explained by the sum of two components. One of them is parametric (linear), the corresponding explanatory variable is measured with additive error and its dimension is finite ($p$). The other component models, in a nonparametric way, the effect of a functional variable (infinite dimension) on the response. $k$-NN based estimators are proposed for each component, and some asymptotic resul...
June 27, 2024
This paper proposes a multivariate nonlinear function-on-function regression model, which allows both the response and the covariates can be multi-dimensional functions. The model is built upon the multivariate functional reproducing kernel Hilbert space (RKHS) theory. It predicts the response function by linearly combining each covariate function in their respective functional RKHS, and extends the representation theorem to accommodate model estimation. Further variable sele...