March 3, 2006
Similar papers 5
August 16, 2021
This paper addresses the problem of regression to reconstruct functions, which are observed with superimposed errors at random locations. We address the problem in reproducing kernel Hilbert spaces. It is demonstrated that the estimator, which is often derived by employing Gaussian random fields, converges in the mean norm of the reproducing kernel Hilbert space to the conditional expectation and this implies local and uniform convergence of this function estimator. By presel...
May 25, 2018
This paper introduces an interpolation-based method, called the reconstruction approach, for nonparametric regression. Based on the fact that interpolation usually has negligible errors compared to statistical estimation, the reconstruction approach uses an interpolator to parameterize the regression function with its values at finite knots, and then estimates these values by (regularized) least squares. Some popular methods including kernel ridge regression can be viewed as ...
November 13, 2023
Inference for functional linear models in the presence of heteroscedastic errors has received insufficient attention given its practical importance; in fact, even a central limit theorem has not been studied in this case. At issue, conditional mean (projection of the slope function) estimates have complicated sampling distributions due to the infinite dimensional regressors, which create truncation bias and scaling problems that are compounded by non-constant variance under h...
November 12, 2012
We study in this paper a smoothness regularization method for functional linear regression and provide a unified treatment for both the prediction and estimation problems. By developing a tool on simultaneous diagonalization of two positive definite kernels, we obtain shaper results on the minimax rates of convergence and show that smoothness regularized estimators achieve the optimal rates of convergence for both prediction and estimation under conditions weaker than those f...
November 21, 2012
Fully nonparametric methods for regression from functional data have poor accuracy from a statistical viewpoint, reflecting the fact that their convergence rates are slower than nonparametric rates for the estimation of high-dimensional functions. This difficulty has led to an emphasis on the so-called functional linear model, which is much more flexible than common linear models in finite dimension, but nevertheless imposes structural constraints on the relationship between ...
February 21, 2024
We address the challenge of estimation in the context of constant linear effect models with dense functional responses. In this framework, the conditional expectation of the response curve is represented by a linear combination of functional covariates with constant regression parameters. In this paper, we present an alternative solution by employing the quadratic inference approach, a well-established method for analyzing correlated data, to estimate the regression coefficie...
May 30, 2005
We propose a generalized functional linear regression model for a regression situation where the response variable is a scalar and the predictor is a random function. A linear predictor is obtained by forming the scalar product of the predictor function with a smooth parameter function, and the expected value of the response is related to this linear predictor via a link function. If, in addition, a variance function is specified, this leads to a functional estimating equatio...
November 6, 2023
This article offers a comprehensive treatment of polynomial functional regression, culminating in the establishment of a novel finite sample bound. This bound encompasses various aspects, including general smoothness conditions, capacity conditions, and regularization techniques. In doing so, it extends and generalizes several findings from the context of linear functional regression as well. We also provide numerical evidence that using higher order polynomial terms can lead...
February 25, 2009
The paper considers functional linear regression, where scalar responses $Y_1,...,Y_n$ are modeled in dependence of random functions $X_1,...,X_n$. We propose a smoothing splines estimator for the functional slope parameter based on a slight modification of the usual penalty. Theoretical analysis concentrates on the error in an out-of-sample prediction of the response for a new random function $X_{n+1}$. It is shown that rates of convergence of the prediction error depend on ...
May 26, 2014
We propose a roughness regularization approach in making nonparametric inference for generalized functional linear models. In a reproducing kernel Hilbert space framework, we construct asymptotically valid confidence intervals for regression mean, prediction intervals for future response and various statistical procedures for hypothesis testing. In particular, one procedure for testing global behaviors of the slope function is adaptive to the smoothness of the slope function ...