September 7, 2006
Similar papers 3
June 27, 2013
The real-time bidding (RTB), aka programmatic buying, has recently become the fastest growing area in online advertising. Instead of bulking buying and inventory-centric buying, RTB mimics stock exchanges and utilises computer algorithms to automatically buy and sell ads in real-time; It uses per impression context and targets the ads to specific people based on data about them, and hence dramatically increases the effectiveness of display advertising. In this paper, we provi...
February 18, 2020
A large fraction of online advertisement is sold via repeated second price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: Can changing the reserve prices based on the previous bids improve the revenue of the auction, taking into account the long-term incentives and strategic behavior of the bidders? We show that if the distribution of the valuations is known and satisfi...
July 26, 2020
We consider the problem of bid prediction in repeated auctions and evaluate the performance of econometric methods for learning agents using a dataset from a mainstream sponsored search auction marketplace. Sponsored search auctions is a billion dollar industry and the main source of revenue of several tech giants. A critical problem in optimizing such marketplaces is understanding how bidders will react to changes in the auction design. We propose the use of no-regret based ...
June 3, 2011
The First Trading Agent Competition (TAC) was held from June 22nd to July 8th, 2000. TAC was designed to create a benchmark problem in the complex domain of e-marketplaces and to motivate researchers to apply unique approaches to a common task. This article describes ATTac-2000, the first-place finisher in TAC. ATTac-2000 uses a principled bidding strategy that includes several elements of adaptivity. In addition to the success at the competition, isolated empirical results a...
September 6, 2006
As Internet-based commerce becomes increasingly widespread, large data sets about the demand for and pricing of a wide variety of products become available. These present exciting new opportunities for empirical economic and business research, but also raise new statistical issues and challenges. In this article, we summarize research that aims to assess the optimality of price discrimination in the software industry using a large e-commerce panel data set gathered from Amazo...
June 2, 2018
In the last three decades, we have seen a significant increase in trading goods and services through online auctions. However, this business created an attractive environment for malicious moneymakers who can commit different types of fraud activities, such as Shill Bidding (SB). The latter is predominant across many auctions but this type of fraud is difficult to detect due to its similarity to normal bidding behaviour. The unavailability of SB datasets makes the development...
April 27, 2006
With the advent of digital media, people are increasingly resorting to online channels for commercial transactions. Online auction is a prototypical example. In such online transactions, the pattern of bidding activity is more complex than traditional online transactions; this is because the number of bidders participating in a given transaction is not bounded and the bidders can also easily respond to the bidding instantaneously. By using the recently developed network theor...
November 16, 2023
This paper considers inference in first-price and second-price sealed-bid auctions with a large number of symmetric bidders having independent private values. Given the abundance of bidders in each auction, we propose an asymptotic framework in which the number of bidders diverges while the number of auctions remains fixed. This framework allows us to perform asymptotically exact inference on key model features using only transaction price data. Specifically, we examine infer...
October 7, 2022
We establish nonparametric identification of auction models with continuous and nonseparable unobserved heterogeneity using three consecutive order statistics of bids. We then propose sieve maximum likelihood estimators for the joint distribution of unobserved heterogeneity and the private value, as well as their conditional and marginal distributions. Lastly, we apply our methodology to a novel dataset from judicial auctions in China. Our estimates suggest substantial gains ...
June 15, 2023
This paper examines the impact of different payment rules on efficiency when algorithms learn to bid. We use a fully randomized experiment of 427 trials, where Q-learning bidders participate in up to 250,000 auctions for a commonly valued item. The findings reveal that the first price auction, where winners pay the winning bid, is susceptible to coordinated bid suppression, with winning bids averaging roughly 20% below the true values. In contrast, the second price auction, w...