November 7, 2006
Given an associative multiplication in matrix algebra compatible with the usual one or, in other words, linear deformation of matrix algebra, we construct a solution to the classical Yang-Baxter equation. We also develop a theory of such deformations and construct numerous examples. It turns out that these deformations are in one-to-one correspondence with representations of certain algebraic structures, which we call M-structures. We also describe an important class of M-structures related to the affine Dynkin diagrams of A, D, E-type. These M-structures and their representations are described in terms of quiver representations.
Similar papers 1
December 21, 2005
We study associative multiplications in semi-simple associative algebras over C compatible with the usual one or, in other words, linear deformations of semi-simple associative algebras over C. It turns out that these deformations are in one-to-one correspondence with representations of certain algebraic structures, which we call M-structures in the matrix case and PM-structures in the case of direct sums of several matrix algebras. We also investigate various properties of P...
June 13, 2022
In this note, we study possible $\mathcal{R}$-matrix constructions in the context of quiver Yangians and Yang-Baxter algebras. For generalized conifolds, we also discuss the relations between the quiver Yangians and some other Yangian algebras (and $\mathcal{W}$-algebras) in literature.
April 26, 2006
We study associative multiplications in semi-simple associative algebras over C compatible with the usual one. An interesting class of such multiplications is related to the affine Dynkin diagrams of A, D, E-type. In this paper we investigate in details the multiplications of the A-type and integrable matrix ODEs and PDEs generated by them.
August 16, 2014
Non-associtive algebras is a research direction gaining much attention these days. New developments show that associative algebras and some not-associative structures can be unified at the level of Yang-Baxter structures. In this paper, we present a unification for associative algebras, Jordan algebras and Lie algebras. The (quantum) Yang-Baxter equation and related structures are interesting topics, because they have applications in many areas of mathematics, physics and com...
July 6, 2004
In the classification of solutions of the Yang--Baxter equation, there are solutions that are not deformations of the trivial solution (essentially the identity). We consider the algebras defined by these solutions, and the corresponding dual algebras. We then study the representations of the latter. We are also interested in the Baxterisation of these $R$-matrices and in the corresponding quantum planes.
September 3, 2015
This work addresses some relevant characteristics of associative algebras in low dimensions. Especially, given 1 and 2 dimensional associative algebras, we explicitly solve associative Yang-Baxter equations and use skew-symmetric solutions to perform double constructions of Frobenius algebras. Besides, we determine related compatible dendriform algebras and solutions of their $ D- $equations. Finally, using symmetric solutions of the latter equations, we proceed to double con...
August 14, 1996
In this paper a class of new quantum groups is presented: deformed Yangians. They arise from rational solutions of the classical Yang-Baxter equation of the form $c_2 /u + const$ . The universal quantum $R$-matrix for a deformed Yangian is described. Its image in finite-dimensional representaions of the Yangian gives new matrix rational solutions of the Yang-Baxter equation (YBE).
March 8, 2000
We introduce triples of associative algebras as a tool for building solutions to the Yang-Baxter equation. It turns out that the class of R-matrices thus obtained is related to a Hecke-like condition, which is formulated for associative algebras with symmetric cyclic inner product. R-matrices for a subclass of the $A_n$-type Belavin-Drinfel'd triples are derived in this way.
December 15, 1993
We obtain an R-matrix or matrix representation of the Artin braid group acting in a canonical way on the vector space of every (super)-Lie algebra or braided-Lie algebra. The same result applies for every (super)-Hopf algebra or braided-Hopf algebra. We recover some known representations such as those associated to racks. We also obtain new representations such as a non-trivial one on the ring $k[x]$ of polynomials in one variable, regarded as a braided-line. Representations ...
October 7, 2013
We generalize Nichita, Popovici and Tanasa solutions of the Braid equation to quasi-Yang-Baxter equation. We define quasi-braided Lie algebras in an additive monoidal category as a natural generalization of Majid's braided Lie algebra concept. Quasi-braided Lie algebras provide solutions for the quasi-Yang-Baxter equation. Examples came from Lie algebras in additive monoidal categories with non-strict associativity and from the theory of quasi-triangular quasi-Hopf algebras.