November 7, 2006
Similar papers 5
July 5, 2011
At the previous congress (CRM 6), we reviewed the construction of Yang-Baxter operators from associative algebras, and presented some (colored) bialgebras and Yang-Baxter systems related to them. The current talk deals with Yang-Baxter operators from (G, \theta)-Lie algebras (structures which unify the Lie algebras and the Lie superalgebras). Thus, we produce solutions for the constant and the spectral-parameter Yang-Baxter equations, Yang-Baxter systems, etc. Attempting to p...
October 17, 2009
We introduce the concept of an extended O-operator that generalizes the well-known concept of a Rota-Baxter operator. We study the associative products coming from these operators and establish the relationship between extended O-operators and the associative Yang-Baxter equation, extended associative Yang-Baxter equation and generalized Yang-Baxter equation.
June 11, 2015
Computational methods are an important tool for solving the Yang-Baxter equations(in small dimensions), for classifying (unifying) structures, and for solving related problems. This paper is an account of some of the latest developments on the Yang-Baxter equation, its set-theoretical version, and its applications. We construct new set-theoretical solutions for the Yang-Baxter equation. Unification theories and other results are proposed or proved.
November 18, 2013
We discuss associative analogues of classical Yang-Baxter equation meromorphically dependent on parameters. We discover that such equations enter in a description of a general class of parameter-dependent Poisson structures and double Lie and Poisson structures in sense of M. Van den Bergh. We propose a classification of all solutions for one-dimensional associative Yang-Baxter equations.
December 21, 2021
Rota-Baxter operators and bialgebras go hand in hand in their applications, such as in the Connes-Kreimer approach to renormalization and the operator approach to the classical Yang-Baxter equation. We establish a bialgebra structure that is compatible with the Rota-Baxter operator, called the Rota-Baxter antisymmetric infinitesimal (ASI) bialgebra. This bialgebra is characterized by generalizations of matched pairs of algebras and double constructions of Frobenius algebras t...
September 4, 2024
In this paper, we introduce two types of deformation maps of quasi-twilled associative algebras. Each type of deformation maps unify various operators on associative algebras. Right deformation maps unify modified Rota-Baxter operators of weight $\lambda$, derivations, homomorphisms and crossed homomorphisms. Left deformation maps unify relative Rota-Baxter operators of weight 0, twisted Rota-Baxter operators, Reynolds operators and deformation maps of matched pairs of associ...
June 27, 2024
Left-Alia algebras are a class of algebras with symmetric Jacobi identities. They contain several typical types of algebras as subclasses, and are closely related to the invariant theory. In this paper, we study the construction theory of left-Alia bialgebras. We introduce the notion of the left-Alia Yang-Baxter equation. We show that an antisymmetric solution of the left-Alia Yang-Baxter equation gives rise to a left-Alia bialgebra that we call triangular. The notions of rel...
July 6, 2001
Quantum monodromy matrices coming from a theory of two coupled (m)KdV equations are modified in order to satisfy the usual Yang-Baxter relation. As a consequence, a general connection between braided and {\it unbraided} (usual) Yang-Baxter algebras is derived and also analysed.
April 7, 2022
These are the extended notes of a mini-course given at the school WinterBraids X. We discuss algebras simultaneously related to: the braid group, the Yang-Baxter equation and the representation theory of quantum groups. The main goal is to explain the idea of the fusion procedure for the Yang-Baxter equation and to show how it leads to new examples of such algebras: the fused Hecke algebras.
January 16, 2008
A cohomology theory for multiplications and comultiplications of Frobenius algebras is developed in low dimensions in analogy with Hochschild cohomology of bialgebras based on deformation theory. Concrete computations are provided for key examples. Skein theoretic constructions give rise to solutions to the Yang-Baxter equation using multiplications and comultiplications of Frobenius algebras, and 2-cocycles are used to obtain deformations of R-matrices thus obtained.