July 17, 2009
In r-neighbour bootstrap percolation on a graph G, a set of initially infected vertices A \subset V(G) is chosen independently at random, with density p, and new vertices are subsequently infected if they have at least r infected neighbours. The set A is said to percolate if eventually all vertices are infected. Our aim is to understand this process on the grid, [n]^d, for arbitrary functions n = n(t), d = d(t) and r = r(t), as t -> infinity. The main question is to determine...
July 7, 2011
Graph bootstrap percolation is a deterministic cellular automaton which was introduced by Bollob\'as in 1968, and is defined as follows. Given a graph $H$, and a set $G \subset E(K_n)$ of initially `infected' edges, we infect, at each time step, a new edge $e$ if there is a copy of $H$ in $K_n$ such that $e$ is the only not-yet infected edge of $H$. We say that $G$ percolates in the $H$-bootstrap process if eventually every edge of $K_n$ is infected. The extremal questions fo...
August 30, 2013
In this paper, we study the k-neighbor bootstrap percolation process on the d-dimensional grid [n]^d, and show that the minimum number of initial vertices that percolate is (1-d/k)n^d + O(n^{d-1})$ when d<=k<=2d. This confirms a conjecture of Pete.
March 4, 2015
Graph bootstrap percolation, introduced by Bollob\'as in 1968, is a cellular automaton defined as follows. Given a "small" graph $H$ and a "large" graph $G = G_0 \subseteq K_n$, in consecutive steps we obtain $G_{t+1}$ from $G_t$ by adding to it all new edges $e$ such that $G_t \cup e$ contains a new copy of $H$. We say that $G$ percolates if for some $t \geq 0$, we have $G_t = K_n$. For $H = K_r$, the question about the size of the smallest percolating graphs was independe...
May 17, 2012
In r-neighbour bootstrap percolation on the vertex set of a graph G, vertices are initially infected independently with some probability p. At each time step, the infected set expands by infecting all uninfected vertices that have at least r infected neighbours. We study the distribution of the time t at which all vertices become infected. Given t = t(n) = o(log n/log log n), we prove a sharp threshold result for the probability that percolation occurs by time t in d-neighbou...
August 15, 2017
We introduce a simple method for proving lower bounds for the size of the smallest percolating set in a certain graph bootstrap process. We apply this method to determine the sizes of the smallest percolating sets in multidimensional tori and multidimensional grids (in particular hypercubes). The former answers a question of Morrison and Noel, and the latter provides an alternative and simpler proof for one of their main results.
March 26, 2014
We study a new geometric bootstrap percolation model, line percolation, on the $d$-dimensional integer grid $[n]^d$. In line percolation with infection parameter $r$, infection spreads from a subset $A\subset [n]^d$ of initially infected lattice points as follows: if there exists an axis-parallel line $L$ with $r$ or more infected lattice points on it, then every lattice point of $[n]^d$ on $L$ gets infected, and we repeat this until the infection can no longer spread. The el...
May 29, 2015
Bootstrap percolation is a type of cellular automaton on graphs, introduced as a simple model of the dynamics of ferromagnetism. Vertices in a graph can be in one of two states: `healthy' or `infected' and from an initial configuration of states, healthy vertices become infected by local rules. While the usual bootstrap processes are monotone in the sets of infected vertices, in this paper, a modification is examined in which infected vertices can return to a healthy state. V...
April 14, 2012
In $r$-neighbor bootstrap percolation on the vertex set of a graph $G$, a set $A$ of initially infected vertices spreads by infecting, at each time step, all uninfected vertices with at least $r$ previously infected neighbors. When the elements of $A$ are chosen independently with some probability $p$, it is natural to study the critical probability $p_c(G,r)$ at which it becomes likely that all of $V(G)$ will eventually become infected. Improving a result of Balogh, Bollob\'...
June 23, 2018
In the $r$-neighbour bootstrap process on a graph $G$, vertices are infected (in each time step) if they have at least $r$ already-infected neighbours. Motivated by its close connections to models from statistical physics, such as the Ising model of ferromagnetism, and kinetically constrained spin models of the liquid-glass transition, the most extensively-studied case is the two-neighbour bootstrap process on the two-dimensional grid $[n]^2$. Around 15 years ago, in a major ...