May 22, 2012
Iterated localization is considered where each node of a network needs to get localized (find its location on 2-D plane), when initially only a subset of nodes have their location information. The iterated localization process proceeds as follows. Starting with a subset of nodes that have their location information, possibly using global positioning system (GPS) devices, any other node gets localized if it has three or more localized nodes in its radio range. The newly locali...
October 21, 2015
The process of $H$-bootstrap percolation for a graph $H$ is a cellular automaton, where, given a subset of the edges of $K_n$ as initial set, an edge is added at time $t$ if it is the only missing edge in a copy of $H$ in the graph obtained through this process at time $t-1$. We discuss an extremal question about the time of $K_r$-bootstrap percolation, namely determining maximal times for an $n$-vertex graph before the process stops. We determine exact values for $r=4$ and f...
August 1, 2016
We study combinatorial parameters of a recently introduced bootstrap percolation problem in finite projective planes. We present sharp results on the size of the minimum percolating sets and the maximal non-percolating sets. Additional results on the minimal and maximal percolation time as well as on the critical probability in the projective plane are also presented.
July 10, 2019
Graph-bootstrap percolation, also known as weak saturation, was introduced by Bollob\'as in 1968. In this process, we start with initial "infected" set of edges $E_0$, and we infect new edges according to a predetermined rule. Given a graph $H$ and a set of previously infected edges $E_t\subseteq E(K_n)$, we infect a non-infected edge $e$ if it completes a new copy of $H$ in $G=([n],E_t\cup e)$. A question raised by Bollob\'as asks for the maximum time the process can run bef...
March 24, 2018
In \emph{$k$-bootstrap percolation}, we fix $p\in (0,1)$, an integer $k$, and a plane graph $G$. Initially, we infect each face of $G$ independently with probability $p$. Infected faces remain infected forever, and if a healthy (uninfected) face has at least $k$ infected neighbors, then it becomes infected. For fixed $G$ and $p$, the \emph{percolation threshold} is the largest $k$ such that eventually all faces become infected, with probability at least $1/2$. For a large cla...
March 16, 2024
The $r$-neighbor bootstrap percolation is a graph infection process based on the update rule by which a vertex with $r$ infected neighbors becomes infected. We say that an initial set of infected vertices propagates if all vertices of a graph $G$ are eventually infected, and the minimum cardinality of such a set in $G$ is called the $r$-bootstrap percolation number, $m(G,r)$, of $G$. In this paper, we study percolating sets in direct products of graphs. While in general graph...
May 23, 2013
We study the distribution of the percolation time $T$ of two-neighbour bootstrap percolation on $[n]^2$ with initial set $A\sim\mathrm{Bin}([n]^2,p)$. We determine $T$ with high probability up to a constant factor for all $p$ above the critical probability for percolation, and to within a $1+o(1)$ factor for a large range of $p$.
February 13, 2007
In majority bootstrap percolation on a graph G, an infection spreads according to the following deterministic rule: if at least half of the neighbours of a vertex v are already infected, then v is also infected, and infected vertices remain infected forever. Percolation occurs if eventually every vertex is infected. The elements of the set of initially infected vertices, A \subset V(G), are normally chosen independently at random, each with probability p, say. This process ...
January 24, 2022
Motivated by the bootstrap percolation process for graphs, we define a new, high-order generalisation to $k$-uniform hypergraphs, in which we infect $j$-sets of vertices for some integer $1\le j \le k-1$. We investigate the smallest possible size of an initially infected set which ultimately percolates and determine the exact size in almost all cases of $k$ and $j$.
September 10, 2019
The $r$-neighbour bootstrap process describes an infection process on a graph, where we start with a set of initially infected vertices and an uninfected vertex becomes infected as soon as it has $r$ infected neighbours. An inital set of infected vertices is called percolating if at the end of the bootstrap process all vertices are infected. We give Ore-type conditions that guarantee the existence of a small percolating set of size $l\leq 2r-2$ if the number of vertices $n$ o...