ID: math/0702780

An explicit sum-product estimate in $\mathbb{F}_p$

February 26, 2007

View on ArXiv
M. Z. Garaev
Mathematics
Number Theory

Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a non-empty subset of $\mathbb{F}_p.$ In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of $\max\{|A+A|, |AA|\}.$ In particular, our result implies that if $1<|A|\le p^{7/13}(\log p)^{-4/13},$ then $$ \max\{|A+A|, |AA|\}\gg \frac{|A|^{15/14}}{(\log|A|)^{2/7}} . $$

Similar papers 1