ID: math/0702780

An explicit sum-product estimate in $\mathbb{F}_p$

February 26, 2007

View on ArXiv

Similar papers 2

An update on the sum-product problem

May 22, 2020

90% Match
Misha Rudnev, Sophie Stevens
Number Theory
Combinatorics

We improve the best known sum-product estimates over the reals. We prove that \[ \max(|A+A|,|AA|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,, \] for a finite $A\subset \mathbb R$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques. Furthermore, \[ |AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,. \] Besides, for a convex set $A$ we show that \[ |A+A|\geq |A|^{\frac{30}{19}-o(1)}\,. \] This paper ...

Find SimilarView on arXiv

Breaking the 6/5 threshold for sums and products modulo a prime

June 19, 2018

90% Match
G. Shakan, I. D. Shkredov
Combinatorics
Number Theory

Let $A \subset \mathbb{F}_p$ of size at most $p^{3/5}$. We show $$|A+A| + |AA| \gtrsim |A|^{6/5 + c},$$ for $c = 4/305$. Our main tools are the cartesian product point--line incidence theorem of Stevens and de Zeeuw and the theory of higher energies developed by the second author.

Find SimilarView on arXiv

A sum-product estimate in finite fields, and applications

January 29, 2003

89% Match
Jean Bourgain, Nets Katz, Terence Tao
Combinatorics
Number Theory

Let $A$ be a subset of a finite field $F := \Z/q\Z$ for some prime $q$. If $|F|^\delta < |A| < |F|^{1-\delta}$ for some $\delta > 0$, then we prove the estimate $|A+A| + |A.A| \geq c(\delta) |A|^{1+\eps}$ for some $\eps = \eps(\delta) > 0$. This is a finite field analogue of a result of Erdos and Szemeredi. We then use this estimate to prove a Szemeredi-Trotter type theorem in finite fields, and obtain a new estimate for the Erdos distance problem in finite fields, as well as...

Find SimilarView on arXiv

A new bound for $A(A + A)$ for large sets

November 23, 2020

89% Match
Aliaksei Semchankau
Number Theory

For $p$ being a large prime number, and $A \subset \mathbb{F}_p$ we prove the following: $(i)$ If $A(A+A)$ does not cover all nonzero residues in $\mathbb{F}_p$, then $|A| < p/8 + o(p)$. $(ii)$ If $A$ is both sum-free and satisfies $A = A^*$, then $|A| < p/9 + o(p)$. $(iii)$ If $|A| \gg \frac{\log\log{p}}{\sqrt{\log{p}}}p$, then $|A + A^*| \geqslant (1 - o(1))\min(2\sqrt{|A|p}, p)$. Here the constants $1/8$, $1/9$, and $2$ are the best possible. The proof involves \em...

Find SimilarView on arXiv

A note on sum-product estimates over finite valuation rings

May 12, 2020

89% Match
Duc Hiep Pham
Number Theory

Let $\mathcal R$ be a finite valuation ring of order $q^r$ with $q$ a power of an odd prime number, and $\mathcal A$ be a set in $\mathcal R$. In this paper, we improve a recent result due to Yazici (2018) on a sum-product type problem. More precisely, we will prove that 1. If $|\mathcal A|\gg q^{r-\frac{1}{3}}$, then $$\max\left\lbrace |\mathcal A+\mathcal A|, |\mathcal A^2+\mathcal A^2|\right\rbrace \gg q^{\frac{r}{2}}|\mathcal A|^{\frac{1}{2}}.$$ 2. If $q^{r-\frac{3}{8}}...

Find SimilarView on arXiv

On the size of the set A(A+1)

November 26, 2008

89% Match
M. Z. Garaev, Chun-Yen Shen
Number Theory

Let $F_p$ be the field of a prime order $p.$ For a subset $A\subset F_p$ we consider the product set $A(A+1).$ This set is an image of $A\times A$ under the polynomial mapping $f(x,y)=xy+x:F_p\times F_p\to F_p.$ In the present paper we show that if $|A|<p^{1/2},$ then $$ |A(A+1)|\ge |A|^{106/105+o(1)}.$$ If $|A|>p^{2/3},$ then we prove that $$|A(A+1)|\gg \sqrt{p |A|}$$ and show that this is the optimal in general settings bound up to the implied constant. We also estimate the...

Find SimilarView on arXiv

On growth of the set $A(A+1)$ in arbitrary finite fields

July 29, 2018

89% Match
Ali Mohammadi
Number Theory

Let $\mathbb{F}_q$ be a finite field of order $q$, where $q$ is a power of a prime. For a set $A \subset \mathbb{F}_q$, under certain structural restrictions, we prove a new explicit lower bound on the size of the product set $A(A + 1)$. Our result improves on the previous best known bound due to Zhelezov and holds under more relaxed restrictions.

Find SimilarView on arXiv

A sum-product theorem in function fields

November 23, 2012

89% Match
Thomas Bloom, Timothy G. F. Jones
Number Theory
Combinatorics

Let $A$ be a finite subset of $\ffield$, the field of Laurent series in $1/t$ over a finite field $\mathbb{F}_q$. We show that for any $\epsilon>0$ there exists a constant $C$ dependent only on $\epsilon$ and $q$ such that $\max\{|A+A|,|AA|\}\geq C |A|^{6/5-\epsilon}$. In particular such a result is obtained for the rational function field $\mathbb{F}_q(t)$. Identical results are also obtained for finite subsets of the $p$-adic field $\mathbb{Q}_p$ for any prime $p$.

Find SimilarView on arXiv

Stronger sum-product inequalities for small sets

August 25, 2018

89% Match
Misha Rudnev, George Shakan, Ilya Shkredov
Combinatorics
Number Theory

Let $F$ be a field and a finite $A\subset F$ be sufficiently small in terms of the characteristic $p$ of $F$ if $p>0$. We strengthen the "threshold" sum-product inequality $$|AA|^3 |A\pm A|^2 \gg |A|^6\,,\;\;\;\;\mbox{hence} \;\; \;\;|AA|+|A+A|\gg |A|^{1+\frac{1}{5}},$$ due to Roche-Newton, Rudnev and Shkredov, to $$|AA|^5 |A\pm A|^4 \gg |A|^{11-o(1)}\,,\;\;\;\;\mbox{hence} \;\; \;\;|AA|+|A\pm A|\gg |A|^{1+\frac{2}{9}-o(1)},$$ as well as $$ |AA|^{36}|A-A|^{24} \gg |A|^{73...

Find SimilarView on arXiv

A note on the set $\boldsymbol{A(A+A)}$

November 21, 2018

88% Match
Pierre-Yves Bienvenu, François Hennecart, Ilya Shkredov
Number Theory

Let $p$ a large enough prime number. When $A$ is a subset of $\mathbb{F}_p\smallsetminus\{0\}$ of cardinality $|A|> (p+1)/3$, then an application of Cauchy-Davenport Theorem gives $\mathbb{F}_p\smallsetminus\{0\}\subset A(A+A)$. In this note, we improve on this and we show that if $|A|\ge 0.3051 p$ implies $A(A+A)\supseteq\mathbb{F}_p\smallsetminus\{0\}$. In the opposite direction we show that there exists a set $A$ such that $|A| > (1/8+o(1))p$ and $\mathbb{F}_p\smallsetminu...

Find SimilarView on arXiv