November 6, 2013
We define prequantization for Dirac manifolds to generalize known procedures for Poisson and (pre) symplectic manifolds by using characteristic distributions obtained from 2-cocycles associated to Dirac structures. Given a Dirac manifold $(M,D)$, we construct Poisson structure on the space of admissible functions on $(M,D)$ and a representation of the Poisson algebra to establish the prequantization condition of $(M,D)$ in terms of a Lie algebroid cohomology. Additional to th...
February 12, 2002
We study gauge transformations of Dirac structures and the relationship between gauge and Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a symplectic groupoid is affected by a gauge transformation of the Poisson structure on its identity section, and prove that gauge-equivalent integrable Poisson structures are Morita equivalent. As an example, we study certain generic sets of Poisson structures on Riemann surfaces: we find complete gaug...
July 23, 1992
In this paper, we formulate a generalization of the classical BRST construction which applies to the case of the reduction of a poisson manifold by a submanifold. In the case of symplectic reduction, our procedure generalizes the usual classical BRST construction which only applies to symplectic reduction of a symplectic manifold by a coisotropic submanifold, \ie\ the case of reducible ``first class'' constraints. In particular, our procedure yields a method to deal with ``se...
March 13, 2005
We write down the local equations that characterize the submanifolds N of a Dirac manifold M which have a normal bundle that is either a coisotropic or an isotropic submanifold of TM endowed with the tangent Dirac structure. In the Poisson case, these formulas prove again a result of Xu: the submanifold N has a normal bundle which is a coisotropic submanifold of TM with the tangent Poisson structure iff N is a Dirac submanifold. In the presymplectic case, it is the isotropy o...
January 17, 2003
Dirac deformation of Poisson operators of arbitrary rank is considered. The question when Dirac reduction does not destroy linear Poisson pencils is studied. A class of separability preserving Dirac reductions in the corresponding quasi-bi-Hamiltonian systems of Benenti type is discussed. Two examples of such reductions are given.
May 3, 2014
We describe an averaging procedure on a Dirac manifold, with respect to a class of compatible actions of a compact Lie group. Some averaging theorems on the existence of invariant realizations of Poisson structures around (singular) symplectic leaves are derived. We show that the construction of coupling Dirac structures (invariant with respect to locally Hamiltonian group actions) on a Poisson foliation is related with a special class of exact gauge transformations.
November 15, 2006
We consider existence and uniqueness of two kinds of coisotropic embeddings and deduce the existence of deformation quantizations of certain Poisson algebras of basic functions. First we show that any submanifold of a Poisson manifold satisfying a certain constant rank condition sits coisotropically inside some larger cosymplectic submanifold, which is naturally endowed with a Poisson structure. Then we give conditions under which a Dirac manifold can be embedded coisotropica...
December 10, 2001
Constrained Hamiltonian systems fall into the realm of presymplectic geometry. We show, however, that also Poisson geometry is of use in this context. For the case that the constraints form a closed algebra, there are two natural Poisson manifolds associated to the system, forming a symplectic dual pair with respect to the original, unconstrained phase space. We provide sufficient conditions so that the reduced phase space of the constrained system may be identified with a ...
June 27, 2013
We construct an analogue of Dirac's reduction for an arbitrary local or non-local Poisson bracket in the general setup of non-local Poisson vertex algebras. This leads to Dirac's reduction of an arbitrary non-local Poisson structure. We apply this construction to an example of a generalized Drinfeld-Sokolov hierarchy.
October 20, 2014
We call a singularity of a presymplectic form $\omega$ removable in its graph if its graph extends to a smooth Dirac structure over the singularity. An example for this is the symplectic form of a magnetic monopole. A criterion for the removability of singularities is given in terms of regularizing functions for pure spinors. All removable singularities are poles in the sense that the norm of $\omega$ is not locally bounded. The points at which removable singularities occur a...