ID: nucl-ex/0002005

A New Measurement of the Muon Magnetic Anomaly

February 8, 2000

View on ArXiv

Similar papers 3

New Experiments to Measure the Muon Anomalous Gyromagnetic Moment

December 22, 2015

90% Match
M. Eads
Instrumentation and Detector...

The magnetic moment is a fundamental property of particles. The measurement of these magnetic moments and the comparison with the values predicted by the standard model of particle physics is a way to test our understanding of the fundamental building blocks of our world. In some cases, such as for the electron, this comparison has resulted in confirmation of the standard model with incredible precision. In contrast, the magnetic moment of the muon has shown a long-standing d...

Find SimilarView on arXiv

The anomalous magnetic moment of the muon in the Standard Model

June 8, 2020

90% Match
T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno, I. Caprini, C. M. Carloni Calame, M. Cè, G. Colangelo, F. Curciarello, H. Czyż, I. Danilkin, M. Davier, C. T. H. Davies, Morte M. Della, S. I. Eidelman, A. X. El-Khadra, A. Gérardin, D. Giusti, M. Golterman, Steven Gottlieb, V. Gülpers, F. Hagelstein, M. Hayakawa, G. Herdoíza, D. W. Hertzog, A. Hoecker, M. Hoferichter, B. -L. Hoid, R. J. Hudspith, F. Ignatov, T. Izubuchi, F. Jegerlehner, L. Jin, A. Keshavarzi, T. Kinoshita, B. Kubis, A. Kupich, A. Kupść, L. Laub, C. Lehner, L. Lellouch, I. Logashenko, B. Malaescu, K. Maltman, M. K. Marinković, P. Masjuan, A. S. Meyer, H. B. Meyer, T. Mibe, K. Miura, S. E. Müller, M. Nio, D. Nomura, A. Nyffeler, V. Pascalutsa, M. Passera, Rio E. Perez del, S. Peris, A. Portelli, M. Procura, C. F. Redmer, B. L. Roberts, P. Sánchez-Puertas, S. Serednyakov, B. Shwartz, S. Simula, D. Stöckinger, H. Stöckinger-Kim, P. Stoffer, T. Teubner, de Water R. Van, M. Vanderhaeghen, G. Venanzoni, Hippel G. von, H. Wittig, Z. Zhang, M. N. Achasov, A. Bashir, N. Cardoso, B. Chakraborty, E. -H. Chao, J. Charles, A. Crivellin, O. Deineka, A. Denig, C. DeTar, C. A. Dominguez, A. E. Dorokhov, V. P. Druzhinin, G. Eichmann, M. Fael, C. S. Fischer, E. Gámiz, Z. Gelzer, J. R. Green, S. Guellati-Khelifa, D. Hatton, N. Hermansson-Truedsson, S. Holz, B. Hörz, M. Knecht, J. Koponen, A. S. Kronfeld, J. Laiho, S. Leupold, P. B. Mackenzie, W. J. Marciano, C. McNeile, D. Mohler, J. Monnard, E. T. Neil, A. V. Nesterenko, K. Ottnad, V. Pauk, A. E. Radzhabov, Rafael E. de, K. Raya, A. Risch, A. Rodríguez-Sánchez, P. Roig, T. San José, E. P. Solodov, R. Sugar, K. Yu. Todyshev, A. Vainshtein, A. Vaquero Avilés-Casco, E. Weil, J. Wilhelm, ... , Zhevlakov A. S.
High Energy Physics - Phenom...
High Energy Physics - Experi...
High Energy Physics - Lattic...
Nuclear Experiment
Nuclear Theory

We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $\alpha$ and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including $\mathcal{O}(\alpha^5)$ with negligible numerical uncertainty. The electroweak contribution is suppressed by $(m_\mu/M_...

Find SimilarView on arXiv

The Muon g-2

February 19, 2009

90% Match
Fred Jegerlehner, Andreas Nyffeler
High Energy Physics - Phenom...

The muon anomalous magnetic moment is one of the most precisely measured quantities in particle physics. In a recent experiment at Brookhaven it has been measured with a remarkable 14-fold improvement of the previous CERN experiment reaching a precision of 0.54ppm. Since the first results were published, a persisting "discrepancy" between theory and experiment of about 3 standard deviations is observed. It is the largest "established" deviation from the Standard Model seen in...

Find SimilarView on arXiv

Recent Progress on the BNL Muon g-2 Experiment

November 13, 2001

90% Match
B. Lee Roberts, H. N. Brown
High Energy Physics - Experi...

The status of the muon (g-2) experiment at the Brookhaven AGS is reviewed. An accuracy of 1.3 ppm on the mu^+ anomalous magnetic moment has been achieved and published. This result differs with the standard model prediction by about 2.5 standard deviations. A data sample with approximately seven times as much data is being analyzed, with a result expected in early 2001.

Find SimilarView on arXiv

Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm

August 11, 2023

89% Match
D. P. 4 and 37 Aguillard, T. 4 and 37 Albahri, D. 4 and 37 Allspach, A. 4 and 37 Anisenkov, K. 35 and 38 Badgley, S. 35 and 38 Baeßler, I. 17 and 39 Bailey, L. 12 and 40 Bailey, V. A. 12 and 40 Baranov, E. 12 and 40 Barlas-Yucel, T. 12 and 40 Barrett, E. 12 and 40 Barzi, F. 12 and 40 Bedeschi, M. 12 and 40 Berz, M. 12 and 40 Bhattacharya, H. P. 12 and 40 Binney, P. 12 and 40 Bloom, J. 12 and 40 Bono, E. 12 and 40 Bottalico, T. 12 and 40 Bowcock, S. 12 and 40 Braun, M. 12 and 40 Bressler, G. 12 and 40 Cantatore, R. M. 26 and 41 Carey, B. C. K. 26 and 41 Casey, D. 26 and 41 Cauz, R. 23 and 22 Chakraborty, A. 23 and 22 Chapelain, S. 23 and 22 Chappa, S. 23 and 22 Charity, C. 23 and 22 Chen, M. 22 and 42 and 43 Cheng, R. 22 and 42 and 43 Chislett, Z. 22 and 42 and 43 Chu, T. E. 10 and 44 Chupp, C. 10 and 44 Claessens, M. E. 10 and 44 Convery, S. 10 and 44 Corrodi, L. 10 and 44 Cotrozzi, J. D. 8 and 45 Crnkovic, S. 8 and 45 Dabagov, P. T. 10 and 44 Debevec, Falco S. 10 and 44 Di, Sciascio G. 10 and 44 Di, B. 10 and 44 Drendel, A. 10 and 44 Driutti, V. N. 10 and 46 Duginov, M. 10 and 46 Eads, A. 10 and 46 Edmonds, J. 10 and 46 Esquivel, M. 10 and 46 Farooq, R. 10 and 46 Fatemi, C. 10 and 46 Ferrari, M. 10 and 46 Fertl, A. T. 10 and 46 Fienberg, A. 10 and 46 Fioretti, D. 10 and 46 Flay, S. B. 10 and 46 Foster, H. 10 and 46 Friedsam, N. S. 10 and 46 Froemming, C. 10 and 46 Gabbanini, I. 10 and 44 Gaines, M. D. 10 and 44 Galati, S. 32 and 47 Ganguly, A. 32 and 47 Garcia, J. 32 and 47 George, L. K. 25 and 48 Gibbons, A. 25 and 48 Gioiosa, K. L. 1 and 27 Giovanetti, P. 1 and 27 Girotti, W. 1 and 27 Gohn, L. 1 and 27 Goodenough, T. 1 and 27 Gorringe, J. 1 and 27 Grange, S. 1 and 27 Grant, F. 5 and 49 Gray, S. 5 and 49 Haciomeroglu, T. 29 and 1 Halewood-Leagas, D. 29 and 1 Hampai, F. 29 and 1 Han, J. 29 and 1 Hempstead, D. W. 29 and 1 Hertzog, G. 29 and 1 Hesketh, E. 29 and 1 Hess, A. 29 and 1 Hibbert, Z. 29 and 1 Hodge, K. W. 29 and 1 Hong, R. 29 and 1 Hong, T. 23 and 22 Hu, Y. 22 and 42 and 43 Hu, M. 9 and 50 Iacovacci, M. 12 and 51 Incagli, P. 12 and 51 Kammel, M. 12 and 51 Kargiantoulakis, M. 12 and 51 Karuza, J. 23 and 22 Kaspar, D. 23 and 22 Kawall, L. 23 and 22 Kelton, A. 23 and 22 Keshavarzi, D. S. 23 and 22 Kessler, K. S. 23 and 22 Khaw, Z. 7 and 19 Khechadoorian, N. V. 7 and 19 Khomutov, B. 7 and 19 Kiburg, M. 7 and 19 Kiburg, O. 22 and 1 and 52 Kim, N. 22 and 1 and 52 Kinnaird, E. 22 and 1 and 52 Kraegeloh, V. A. 22 and 1 and 52 Krylov, N. A. 22 and 1 and 52 Kuchinskiy, K. R. 22 and 1 and 52 Labe, J. 22 and 1 and 52 LaBounty, M. 22 and 1 and 52 Lancaster, S. 22 and 1 and 52 Lee, B. 22 and 1 and 52 Li, D. 22 and 53 Li, L. 22 and 42 and 43 Li, I. 4 and 37 Logashenko, A. Lorente 22 and 42 and 43 Campos, Z. 22 and 42 and 43 Lu, A. 10 and 54 Lucà, G. 10 and 54 Lukicov, A. 10 and 54 Lusiani, A. L. 7 and 2 Lyon, B. 7 and 2 MacCoy, R. 7 and 2 Madrak, K. 7 and 2 Makino, S. 7 and 2 Mastroianni, J. P. 7 and 2 Miller, S. 7 and 2 Miozzi, B. 7 and 2 Mitra, J. P. 7 and 2 Morgan, W. M. 7 and 2 Morse, J. 7 and 2 Mott, A. 9 and 50 Nath, J. K. 23 and 22 Ng, H. 16 and 5 Nguyen, Y. 16 and 5 Oksuzian, Z. 16 and 5 Omarov, R. 26 and 41 Osofsky, S. 26 and 41 Park, G. 26 and 41 Pauletta, G. M. 25 and 55 Piacentino, R. N. 28 and 56 Pilato, K. T. 28 and 56 Pitts, B. 1 and 47 Plaster, D. 1 and 47 Počanić, N. 1 and 47 Pohlman, C. C. 1 and 47 Polly, J. 1 and 47 Price, B. 1 and 47 Quinn, M. U. H. 1 and 47 Qureshi, S. 1 and 47 Ramachandran, E. 26 and 41 Ramberg, R. 26 and 41 Reimann, B. L. 26 and 41 Roberts, D. L. 26 and 41 Rubin, L. 26 and 41 Santi, C. 28 and 57 Schlesier, A. 5 and 16 Schreckenberger, Y. K. 5 and 16 Semertzidis, D. 4 and 37 Shemyakin, M. 11 and 58 Sorbara, J. 6 and 30 and 18 Stapleton, D. 6 and 30 and 18 Still, D. 6 and 30 and 18 Stöckinger, C. 6 and 30 and 18 Stoughton, D. 6 and 30 and 18 Stratakis, H. E. 6 and 30 and 18 Swanson, G. 6 and 30 and 18 Sweetmore, D. A. 6 and 30 and 18 Sweigart, M. J. 6 and 30 and 18 Syphers, D. A. 6 and 30 and 18 Tarazona, T. 29 and 33 Teubner, A. E. 29 and 33 Tewsley-Booth, V. 2 and 59 Tishchenko, N. H. 2 and 59 Tran, W. 27 and 30 Turner, E. 27 and 30 Valetov, D. 27 and 30 Vasilkova, G. 30 and 48 Venanzoni, V. P. 23 and 22 Volnykh, T. 23 and 22 Walton, A. 23 and 22 Weisskopf, L. 23 and 22 Welty-Rieger, P. 23 and 22 Winter, Y. 23 and 22 Wu, B. 23 and 22 Yu, M. 23 and 22 Yucel, ... , Zhang C.
High Energy Physics - Experi...

We present a new measurement of the positive muon magnetic anomaly, $a_\mu \equiv (g_\mu - 2)/2$, from the Fermilab Muon $g\!-\!2$ Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon d...

Find SimilarView on arXiv

Muon g-2: Review of Theory and Experiment

March 5, 2007

89% Match
James P. Miller, Rafael Eduardo de, B. Lee Roberts
High Energy Physics - Phenom...
High Energy Physics - Experi...

A review of the experimental and theoretical determinations of the anomalous magnetic moment of the muon is given. The anomaly is defined by a=(g-2)/2, where the Land\'e g-factor is the proportionality constant that relates the spin to the magnetic moment. For the muon, as well as for the electron and tauon, the anomaly a differs slightly from zero (of order 10^{-3}) because of radiative corrections. In the Standard Model, contributions to the anomaly come from virtual `loops...

Find SimilarView on arXiv

The Measurement of the Muon's Anomalous Magnetic Moment Isn't

August 12, 2002

89% Match
Jonathan L. Feng, Konstantin T. Matchev, Yael Shadmi
High Energy Physics - Phenom...
High Energy Physics - Experi...

Recent results announced as measurements of the muon's anomalous magnetic moment are in fact measurements of the muon's anomalous spin precession frequency. This precession frequency receives contributions from both the muon's anomalous magnetic and electric dipole moments. We note that all existing data cannot resolve this ambiguity, and the current deviation from standard model predictions may equally well be interpreted as evidence for new physics in the muon's anomalous m...

Find SimilarView on arXiv

Next Generation Muon g-2 Experiment at FNAL

October 22, 2016

89% Match
Martin Fertl
Instrumentation and Detector...

The precise measurement of the muon anomalous magnetic moment $a_\mathrm{\mu}$ has stimulated much theoretical and experimental efforts over more than six decades. The last experiment at Brookhaven National Laboratory, Upton, NY, USA obtained a value more than three standard deviations larger than predicted by the Standard Model of particle physics, and is one of the strongest hints for physics beyond the Standard Model. A new experiment at Fermi National Accelerator Laborato...

Find SimilarView on arXiv

Essentials of the Muon g-2

March 12, 2007

89% Match
F. Jegerlehner
High Energy Physics - Phenom...

The muon anomalous magnetic moment is one of the most precisely measured quantities in particle physics. Recent high precision measurements (0.54ppm) at Brookhaven reveal a ``discrepancy'' by 3 standard deviations from the electroweak Standard Model which could be a hint for an unknown contribution from physics beyond the Standard Model. This triggered numerous speculations about the possible origin of the ``missing piece''. The remarkable 14-fold improvement of the previous ...

Find SimilarView on arXiv

Muon g-2

September 2, 2003

89% Match
Ernst for the g-2 collaboration Sichtermann
High Energy Physics - Experi...

The muon g-2 collaboration has measured the anomalous magnetic g value of the positive muon to within a relative uncertainty of 0.7 parts per million. The result, a_{\mu^+} = 11 659 204(7)(5) x 10^{-10} is in good agreement with the preceding data on a_{\mu^+} and a_{\mu^-} and has about twice smaller uncertainty. The measurement tests standard model theory, which at the level of the experimental uncertainty involves quantum electrodynamics, quantum chromodynamics, and electr...

Find SimilarView on arXiv