August 1, 2000
The circular photogalvanic effect (CPGE) has been observed in (100)-oriented $p$-GaAs/AlGaAs quantum wells at normal incidence of far-infrared radiation. It is shown that monopolar optical spin orientation of free carriers causes an electric current which reverses its direction upon changing from left to right circularly polarized radiation. CPGE at normal incidence and the occurence of the linear photogalvanic effect indicate a reduced point symmetry of studied multi-layered heterostructures. As proposed, CPGE can be utilized to investigate separately spin polarization of electrons and holes and the symmetry of quantum wells.
Similar papers 1
March 11, 2003
Under oblique incidence of circularly polarized infrared radiation the spin-galvanic effect has been unambiguously observed in (001)-grown $n$-type GaAs quantum well (QW) structures in the absence of any external magnetic field. Resonant inter-subband transitions have been obtained making use of the tunability of the free-electron laser FELIX. It is shown that a helicity dependent photocurrent along one of the $<110>$ axes is predominantly contributed by the spin-galvanic eff...
April 11, 2003
Spin photocurrents generated by homogeneous optical excitation with circularly polarized radiation in quantum wells (QWs) are reviewed. The absorption of circularly polarized light results in optical spin orientation due to the transfer of the angular momentum of photons to electrons of a two-dimensional electron gas (2DEG). It is shown that in quantum wells belonging to one of the gyrotropic crystal classes a non-equilibrium spin polarization of uniformly distributed electro...
April 11, 2003
Spin photocurrents generated by homogeneous optical excitation with circularly polarized radiation in quantum wells (QWs) are reviewed. The absorption of circularly polarized light results in optical spin orientation due to the transfer of the angular momentum of photons to electrons of a two-dimensional electron gas (2DEG). It is shown that in quantum wells belonging to one of the gyrotropic crystal classes a non-equilibrium spin polarization of uniformly distributed electro...
August 21, 2003
We observed a circular photogalvanic effect (CPGE) in GaAs quantum wells at inter-band excitation. The spectral dependence of the CPGE is measured together with that of the polarization degree of the time resolved photoluminescence. A theoretical model takes into account spin splitting of conduction and valence bands.
March 4, 2003
We show that the sign of the circular photogalvanic effect can be changed by tuning the radiation frequency of circularly polarized light. Here resonant inversion of the photogalvanic effect has been observed for direct inter-subband transition in n-type GaAs quantum well structures. This inversion of the photon helicity driven current is a direct consequence of the lifting of the spin degeneracy due to k-linear terms in the Hamiltonian in combination with energy and momentum...
January 21, 2003
It is shown that absorption of circularly polarized infrared radiation due to intraband (Drude-like) transitions in n-type bulk semiconductors and due to intra-subband or inter-subband transitions in quantum well (QW) structures results in a monopolar spin orientation of free electrons. Spin polarization in zinc-blende-structure based QWs is demonstrated by the observation of the spin-galvanic and the circular photogalvanic effects. The monopolar spin orientation in n-type ma...
September 8, 2005
The circular photogalvanic effect (CPGE), induced by infrared radiation, has been observed in (0001)-oriented GaN quantum well (QW) structures. The photocurrent changes sign upon reversing the radiation helicity demonstrating the existence of spin-splitting of the conduction band in k-space in this type of materials. The observation suggests the presence of a sizeable Rashba type of spin-splitting, caused by the built-in asymmetry at the AlGaN/GaN interface.
February 12, 2010
We describe the observation of the circular and linear photogalvanic effects in HgTe/CdHgTe quantum wells. The interband absorption of mid-infrared radiation as well as the intrasubband absorption of terahertz (THz) radiation in the QWs structures is shown to cause a dc electric current due to these effects. The photocurrent magnitude and direction varies with the radiation polarization state and crystallographic orientation of the substrate in a simple way that can be unders...
October 20, 2006
We report on the study of spin photocurrents in (110)-grown quantum well structures. Investigated effects comprise the circular photogalvanic effect and so far not observed circular photon drag effect. The experimental data can be described by an analytical expression derived from a phenomenological theory. A microscopic model of the circular photon drag effect is developed demonstrating that the generated current has spin dependent origin.
November 19, 2010
We report on the study of the linear and circular magneto-gyrotropic photogalvanic effect (MPGE) in GaAs/AlGaAs quantum well structures. Using the fact that in such structures the Land\'e-factor g* depends on the quantum well (QW) width and has different signs for narrow and wide QWs, we succeeded to separate spin and orbital contributions to both MPGEs. Our experiments show that, for most quantum well widths, the PGEs are mainly driven by spin-related mechanisms, which resul...