July 20, 2001
Similar papers 4
April 30, 2018
This is a comment on articles Phys. Rev. Lett. 119, 240401 (2017) [arXiv:1707.06050] and Phys. Rev. Lett. 119, 240402 (2017) [arXiv:1707.06036]. We argue that gravity-induced entanglement by Newtonian forces is agnostic to the quantum or classical nature of the gravitational true degrees of freedom.
August 3, 2009
The mutual conceptual incompatibility between GR and QM/QFT is generally seen as the most essential motivation for the development of a theory of Quantum Gravity (QG). It leads to the insight that, if gravity is a fundamental interaction and QM is universally valid, the gravitational field will have to be quantized, not at least because of the inconsistency of semi-classical theories of gravity. If this means to quantize GR, its identification of the gravitational field with ...
April 3, 2000
This is an introduction to quantum gravity, aimed at a fairly general audience and concentrating on what have historically two main approaches to quantum gravity: the covariant and canonical programs (string theory is not covered). The quantization of gravity is discussed by analogy with the quantization of the electromagnetic field. The conceptual and technical problems of both approaches are discussed, and the paper concludes with a discussion of evidence for quantum gravit...
February 2, 2009
The incompatibility between GR and QM is generally seen as a sufficient motivation for the development of a theory of Quantum Gravity. If - so a typical argumentation - QM gives a universally valid basis for the description of all natural systems, then the gravitational field should have quantum properties. Together with the arguments against semi-classical theories of gravity, this leads to a strategy which takes a quantization of GR as the natural avenue to Quantum Gravity....
October 31, 1995
A discursive, non-technical, analysis is made of some of the basic issues that arise in almost any approach to quantum gravity, and of how these issues stand in relation to recent developments in the field. Specific topics include the applicability of the conceptual and mathematical structures of both classical general relativity and standard quantum theory. This discussion is preceded by a short history of the last twenty-five years of research in quantum gravity, and conclu...
October 26, 2023
It is now widely believed that if the gravitational field is (perturbatively) quantum, it would entangle two massive objects (in spatial superpositions) which were otherwise unentangled to begin with. Recently, actual table-top experiments have been proposed to test this idea in what would be the first detection of perturbative quantum gravity. In this essay, we devise a thought experiment to prove that such gravity-induced entanglement depends on the spacetime curvature and ...
June 1, 2022
Observable signatures of the quantum nature of gravity at low energies have recently emerged as a promising new research field. One prominent avenue is to test for gravitationally induced entanglement between two mesoscopic masses prepared in spatial superposition. Here we analyze such proposals and what one can infer from them about the quantum nature of gravity, as well as the electromagnetic analogues of such tests. We show that it is not possible to draw conclusions about...
February 15, 2013
EPR-type measurements on spatially separated entangled spin qubits allow one, in principle, to detect curvature. Also the entanglement of the vacuum state is affected by curvature. Here, we ask if the curvature of spacetime can be expressed entirely in terms of the spatial entanglement structure of the vacuum. This would open up the prospect that quantum gravity could be simulated on a quantum computer and that quantum information techniques could be fully employed in the stu...
May 27, 2002
The two surprising features of gravity are (a) the principle of equivalence and (b) the connection between gravity and thermodynamics. Using principle of equivalence and special relativity in the {\it local inertial frame}, one could obtain the insight that gravity must possess a geometrical description. I show that, using the same principle of equivalence, special relativity and quantum theory in the {\it local Rindler frame} one can obtain the Einstein-Hilbert action functi...
August 8, 2019
In this paper we make an extensive description of quantum non-locality, one of the most intriguing and fascinating facets of quantum mechanics. After a general presentation of several studies on this subject, we consider if quantum non-locality, and the friction it carries with special relativity, can eventually find a "solution" by considering higher dimensional spaces.