August 3, 2004
Similar papers 4
June 10, 2005
The interaction of Na atoms with a surface was probed by inserting a nanofabricated material grating into one arm of an atom interferometer (IFM). This technique permits a direct measurement of the change in phase and coherence of matter waves as they pass within 25 nm of the grating bar surface. The practical concerns and challenges of making such a measurement are discussed here. Interference of spurious diffraction orders, IFM path overlap, and the partial obscuration of I...
February 11, 2022
The analogs of optical elements in light-pulse atom interferometers are generated from the interaction of matter waves with light fields. As such, these fields possess quantum properties, which fundamentally lead to a reduced visibility in the observed interference. This loss is a consequence of the encoded information about the atom's path. However, the quantum nature of the atom-optical elements also gives an additional degree of freedom to reduce such effects: We demonstra...
September 13, 2017
In front of a mirror, the radiation of weakly driven large disordered clouds presents an interference fringe in the backward direction, on top of an incoherent background. Although strongly driven atoms usually present little coherent scattering, we here show that the mirror-assisted version can produce high contrast fringes, for arbitrarily high saturation parameters. The contrast of the fringes oscillates with the Rabi frequency of the atomic transition and the distance bet...
December 12, 2007
The operation of a BEC based atom interferometer, where the atoms are held in a weakly-confining magnetic trap and manipulated with counter-propagating laser beams, is analyzed. A simple analytic model is developed to describe the dynamics of the interferometer. It is used to find the regions of parameter space with high and low contrast of the interference fringes for both single and double reflection interferometers. We demonstrate that for a double reflection interferomete...
May 30, 2003
A new technique for maintaining high contrast in an atom interferometer is used to measure large de Broglie wave phase shifts. Dependence of an interaction induced phase on the atoms' velocity is compensated by applying an engineered \emph{counter phase}. The counter phase is equivalent to a rotation and precisely determined by a frequency, and can be used to measure phase shifts due to interactions of unknown strength. Phase shifts of 150 radians (5 times larger than previou...
September 9, 2003
We present a detailed investigation of the coherence properties of beam splitters and Mach-Zehnder interferometers for guided atoms. It is demonstrated that such a setup permits coherent wave packet splitting and leads to the appearance of interference fringes. We study single-mode and thermal input states and show that even for thermal input states interference fringes can be clearly observed, thus demonstrating the multimode operation and the robustness of the interferomete...
November 27, 2017
In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. We demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species. This ...
August 9, 2018
The uniformity of the intensity and phase of laser beams is crucial to high-performance atom interferometers. Inhomogeneities in the laser intensity profile cause contrast reductions and systematic effects in interferometers operated with atom sources at micro-Kelvin temperatures, and detrimental diffraction phase shifts in interferometers using large momentum transfer beam splitters. We report on the implementation of a so-called top-hat laser beam in a long-interrogation-ti...
October 31, 2011
In a light-pulse atom interferometer, we use a tip-tilt mirror to remove the influence of the Coriolis force from Earth's rotation and to characterize configuration space wave packets. For interferometers with large momentum transfer and large pulse separation time, we improve the contrast by up to 350% and suppress systematic effects. We also reach what is to our knowledge the largest spacetime area enclosed in any atom interferometer to date. We discuss implications for fut...
January 5, 2017
We propose a marginally stable optical resonator suitable for atom interferometry. The resonator geometry is based on two flat mirrors at the focal planes of a lens that produces the large beam waist required to coherently manipulate cold atomic ensembles. Optical gains of about 100 are achievable using optics with part-per-thousand losses. The resulting power build-up will allow for enhanced coherent manipulation of the atomic wavepackets such as large separation beamsplitte...