September 29, 2020
In many real world datasets arising from social networks, there are hidden higher order relations among data points which cannot be captured using graph modeling. It is natural to use a more general notion of hypergraphs to model such social networks. In this paper, we introduce a new local geometry of hyperdges in hypergraphs which allows to capture higher order relations among data points. Furthermore based on this new geometry, we also introduce new methodology--the neares...
March 2, 2023
Many networks can be characterised by the presence of communities, which are groups of units that are closely linked and can be relevant in understanding the system's overall function. Recently, hypergraphs have emerged as a fundamental tool for modelling systems where interactions are not limited to pairs but may involve an arbitrary number of nodes. Using a dual approach to community detection, in this study we extend the concept of link communities to hypergraphs, allowing...
October 24, 2023
Hypergraphs naturally represent group interactions, which are omnipresent in many domains: collaborations of researchers, co-purchases of items, and joint interactions of proteins, to name a few. In this work, we propose tools for answering the following questions: (Q1) what are the structural design principles of real-world hypergraphs? (Q2) how can we compare local structures of hypergraphs of different sizes? (Q3) how can we identify domains from which hypergraphs are? We ...
February 26, 2024
A wide variety of complex systems are characterized by interactions of different types involving varying numbers of units. Multiplex hypergraphs serve as a tool to describe such structures, capturing distinct types of higher-order interactions among a collection of units. In this work, we introduce a comprehensive set of measures to describe structural connectivity patterns in multiplex hypergraphs, considering scales from node and hyperedge levels to the system's mesoscale. ...
February 9, 2024
The richness of many complex systems stems from the interactions among their components. The higher-order nature of these interactions, involving many units at once, and their temporal dynamics constitute crucial properties that shape the behaviour of the system itself. An adequate description of these systems is offered by temporal hypergraphs, that integrate these features within the same framework. However, tools for their temporal and topological characterization are stil...
December 30, 2004
While the majority of approaches to the characterization of complex networks has relied on measurements considering only the immediate neighborhood of each network node, valuable information about the network topological properties can be obtained by considering further neighborhoods. The current work discusses on how the concepts of hierarchical node degree and hierarchical clustering coefficient (introduced in cond-mat/0408076), complemented by new hierarchical measurements...
March 16, 2023
Many real-world complex systems are characterized by interactions in groups that change in time. Current temporal network approaches, however, are unable to describe group dynamics, as they are based on pairwise interactions only. Here, we use time-varying hypergraphs to describe such systems, and we introduce a framework based on higher-order correlations to characterize their temporal organization. We analyze various social systems, finding that groups of different sizes ha...
April 16, 2018
A complex network is a condensed representation of the relational topological framework of a complex system. A main reason for the existence of such networks is the transmission of items through the entities of these complex systems. Here, we consider a communicability function that accounts for the routes through which items flow on networks. Such a function induces a natural embedding of a network in a Euclidean high-dimensional sphere. We use one of the geometric parameter...
August 9, 2023
Hypernetwork is a useful way to depict multiple connections between nodes, making it an ideal tool for representing complex relationships in network science. In recent years, there has been a marked increase in studies on hypernetworks, however, the comparison of the difference between two hypernetworks has been given less attention. This paper proposes a hyper-distance-based method (HD) for comparing hypernetworks. This method takes into account high-order information, such ...
October 31, 2023
Heterogeneity and geometry are key explanatory components underlying the structure of real-world networks. The relationship between these components and the statistical complexity of networks is not well understood. We introduce a parsimonious normalised measure of statistical complexity for networks -- normalised hierarchical complexity. The measure is trivially 0 in regular graphs and we prove that this measure tends to 0 in Erd\"os-R\'enyi random graphs in the thermodynami...