September 24, 2006
Complex networks are universal, arising in fields as disparate as sociology, physics, and biology. In the past decade, extensive research into the properties and behaviors of complex systems has uncovered surprising commonalities among the topologies of different systems. Attempts to explain these similarities have led to the ongoing development and refinement of network models and graph-theoretical analysis techniques with which to characterize and understand complexity. In ...
January 29, 2021
Complex networks are pervasive in the real world, capturing dyadic interactions between pairs of vertices, and a large corpus has emerged on their mining and modeling. However, many phenomena are comprised of polyadic interactions between more than two vertices. Such complex hypergraphs range from emails among groups of individuals, scholarly collaboration, or joint interactions of proteins in living cells. A key generative principle within social and other complex networks...
August 15, 2006
We develop a full theoretical approach to clustering in complex networks. A key concept is introduced, the edge multiplicity, that measures the number of triangles passing through an edge. This quantity extends the clustering coefficient in that it involves the properties of two --and not just one-- vertices. The formalism is completed with the definition of a three-vertex correlation function, which is the fundamental quantity describing the properties of clustered networks....
November 26, 2007
What is a complex network? How do we characterize complex networks? Which systems can be studied from a network approach? In this text, we motivate the use of complex networks to study and understand a broad panoply of systems, ranging from physics and biology to economy and sociology. Using basic tools from statistical physics, we will characterize the main types of networks found in nature. Moreover, the most recent trends in network research will be briefly discussed.
May 7, 2009
Recent years have witnessed the emergence of a new class of social networks, that require us to move beyond previously employed representations of complex graph structures. A notable example is that of the folksonomy, an online process where users collaboratively employ tags to resources to impart structure to an otherwise undifferentiated database. In a recent paper[1] we proposed a mathematical model that represents these structures as tripartite hypergraphs and defined bas...
January 26, 2023
Hypergraphs, describing networks where interactions take place among any number of units, are a natural tool to model many real-world social and biological systems. In this work we propose a principled framework to model the organization of higher-order data. Our approach recovers community structure with accuracy exceeding that of currently available state-of-the-art algorithms, as tested in synthetic benchmarks with both hard and overlapping ground-truth partitions. Our mod...
June 15, 2021
In this paper, we propose two novel approaches for hypergraph comparison. The first approach transforms the hypergraph into a graph representation for use of standard graph dissimilarity measures. The second approach exploits the mathematics of tensors to intrinsically capture multi-way relations. For each approach, we present measures that assess hypergraph dissimilarity at a specific scale or provide a more holistic multi-scale comparison. We test these measures on syntheti...
November 15, 2019
In the last twenty years network science has proven its strength in modelling many real-world interacting systems as generic agents, the nodes, connected by pairwise edges. Yet, in many relevant cases, interactions are not pairwise but involve larger sets of nodes, at a time. These systems are thus better described in the framework of hypergraphs, whose hyperedges effectively account for multi-body interactions. We hereby propose a new class of random walks defined on such hi...
April 20, 2010
This paper quantitatively explores the social and socio-semantic patterns of constitution of academic collaboration teams. To this end, we broadly underline two critical features of social networks of knowledge-based collaboration: first, they essentially consist of group-level interactions which call for team-centered approaches. Formally, this induces the use of hypergraphs and n-adic interactions, rather than traditional dyadic frameworks of interaction such as graphs, bin...
November 13, 2023
Complex systems frequently exhibit multi-way, rather than pairwise, interactions. These group interactions cannot be faithfully modeled as collections of pairwise interactions using graphs, and instead require hypergraphs. However, methods that analyze hypergraphs directly, rather than via lossy graph reductions, remain limited. Hypergraph motif mining holds promise in this regard, as motif patterns serve as building blocks for larger group interactions which are inexpressibl...