July 29, 2005
Similar papers 2
December 14, 2011
Residual motion of the arm cavity mirrors is expected to prove one of the principal impediments to systematic lock acquisition in advanced gravitational-wave interferometers. We present a technique which overcomes this problem by employing auxiliary lasers at twice the fundamental measurement frequency to pre-stabilise the arm cavities' lengths. Applying this approach, we reduce the apparent length noise of a 1.3 m long, independently suspended Fabry-Perot cavity to 30 pm rms...
September 12, 2014
Optics experiments critically require the stable and accurate locking of relative phases between light beams or the stabilization of Fabry-Perot cavity lengths. Here, we present a simple and inexpensive technique based on a stand-alone microcontroller unit to perform such tasks. Easily programmed in C language, this reconfigurable digital locking system also enables automatic relocking and sequential functioning. Different algorithms are detailed and applied to fringe locking...
August 18, 2011
In optical clocks, transitions of ions or neutral atoms are interrogated using pulsed ultra-narrow laser fields. Systematic phase chirps of the laser or changes of the optical path length during the measurement cause a shift of the frequency seen by the interrogated atoms. While the stabilization of cw-optical links is now a well established technique even on long distances, phase stable links for pulsed light pose additional challanges and have not been demonstrated so far. ...
July 12, 2022
We study optical cavity locking for laser stabilization through spatial modulation of the phase front of a light beam. A theoretical description of the underlying principle is developed for this method and special attention is paid to residual amplitude modulation (RAM) caused by experimental imperfections, especially the manufacture errors of the spatial phase modulator. The studied locking method owns the common advantages of the Pound-Drever-Hall method and the tilt-lockin...
February 28, 2002
We report on the frequency locking of a frequency doubled Nd:YAG laser to a 45 000 finesse, 87-cm-long, Fabry-Perot cavity using a modified form of the Pound-Drever-Hall technique. Necessary signals, such as light phase modulation and frequency correction feedback, are fed direcly to the infrared pump laser. This is sufficient to achieve a stable locking of the 532 nm visible beam to the cavity, also showing that the doubling process does not degrade laser performances.
July 14, 2014
We have implemented a simple and cost-effective digital system for long-term frequency stabilisation and locking to an arbitrary wavelength of the single-frequency ring CW Ti:Sapphire laser. This system is built around two confocal Fabry-Perot cavities, one of which is used to narrow short-term line width of the laser and the other to improve long-term stability of the laser frequency. The second interferometer is also in the path of the radiation from an external-cavity diod...
April 5, 2017
Lock acquisition of a suspended optical cavity can be a highly stochastic process and is therefore nontrivial. Guided lock is a method to make lock acquisition less stochastic by decelerating the motion of the cavity length based on an extrapolation of the motion from an instantaneous velocity measurement. We propose an improved scheme which is less susceptible to seismic disturbances by incorporating the acceleration as a higher order correction in the extrapolation. We impl...
November 16, 2011
An optical technique based on stability transfer among modes of a monolithic optical microresonator is proposed for long therm frequency stabilization of a radiofrequency (RF) oscillator. We show that locking two resonator modes, characterized with dissimilar sensitivity in responding to an applied forcing function, to a master RF oscillator allows enhancing the long term stability of a slave RF oscillator locked to two resonator modes having nearly identical sensitivity. For...
January 9, 2017
The stabilization of lasers to absolute frequency references is a fundamental requirement in several areas of atomic, molecular and optical physics. A range of techniques are available to produce a suitable reference onto which one can 'lock' the laser, many of which depend on the specific internal structure of the reference or are sensitive to laser intensity noise. We present a novel method using the frequency modulation of an acousto-optic modulator's carrier (drive) signa...
April 26, 2009
We report ultra-stable locking of a commercially available extended cavity diode laser to a vibration-insensitive high finesse Fabry-Perot cavity. A servo bandwidth of 2 MHz is demonstrated. The absolute stability of the diode laser after locking is measured with a three-cornered-hat method. The resulting Allan deviation reaches a level of $2.95\times10^{-15}$ at 1 s, corresponding to only 0.93 Hz linewidth, even without vibration isolation of the reference cavity.