January 2, 2007
We present a multiscale approach to the modeling of polymer dynamics in the presence of a fluid solvent. The approach combines Langevin Molecular Dynamics (MD) techniques with a mesoscopic Lattice-Boltzmann (LB) method for the solvent dynamics. A unique feature of the present approach is that hydrodynamic interactions between the solute macromolecule and the aqueous solvent are handled explicitly, and yet in a computationally tractable way due to the dual particle-field nature of the LB solver. The suitability of the present LB-MD multiscale approach is demonstrated for the problem of polymer fast translocation through a nanopore. We also provide an interpretation of our results in the context of DNA translocation through a nanopore, a problem that has attracted much theoretical and experimental attention recently.
Similar papers 1
March 7, 2007
We employ a multiscale approach to model the translocation of biopolymers through nanometer size pores. Our computational scheme combines microscopic Langevin molecular dynamics (MD) with a mesoscopic lattice Boltzmann (LB) method for the solvent dynamics, explicitly taking into account the interactions of the molecule with the surrounding fluid. Both dynamical and statistical aspects of the translocation process were investigated, by simulating polymers of various initial co...
November 16, 2007
We employ a multiscale approach to model the translocation of biopolymers through nanometer size pores. Our computational scheme combines microscopic Molecular Dynamics (MD) with a mesoscopic Lattice Boltzmann (LB) method for the solvent dynamics, explicitly taking into account the interactions of the molecule with the surrounding fluid. We describe an efficient parallel implementation of the method which exhibits excellent scalability on the Blue Gene platform. We investigat...
October 5, 2007
We describe a recent multiscale approach based on the concurrent coupling of constrained molecular dynamics for long biomolecules with a mesoscopic lattice Boltzmann treatment of solvent hydrodynamics. The multiscale approach is based on a simple scheme of exchange of space-time information between the atomistic and mesoscopic scales and is capable of describing self-consistent hydrodynamic effects on molecular motion at a computational cost which scales linearly with both so...
February 21, 2007
A multiscale approach is used to simulate the translocation of DNA through a nanopore. Within this scheme, the interactions of the molecule with the surrounding fluid (solvent) are explicitly taken into account. By generating polymers of various initial configurations and lengths we map the probability distibutions of the passage times of the DNA through the nanopore. A scaling law behavior for the most probable of these times with respect to length is derived, and shown to e...
September 5, 2008
We investigate the process of biopolymer translocation through a narrow pore using a multiscale approach which explicitly accounts for the hydrodynamic interactions of the molecule with the surrounding solvent. The simulations confirm that the coupling of the correlated molecular motion to hydrodynamics results in significant acceleration of the translocation process. Based on these results, we construct a phenomenological model which incorporates the statistical and dynamica...
October 25, 2017
We develop a theoretical and computational approach to deal with systems that involve a disparate range of spatio-temporal scales, such as those comprised of colloidal particles or polymers moving in a fluidic molecular environment. Our approach is based on a multiscale modeling that combines the slow dynamics of the large particles with the fast dynamics of the solvent into a unique framework. The former is numerically solved via Molecular Dynamics and the latter via a multi...
February 8, 2008
We present a detailed description of biopolymer translocation through a nanopore in the presence of a solvent, using an innovative multi-scale methodology which treats the biopolymer at the microscopic scale as combined with a self-consistent mesoscopic description for the solvent fluid dynamics. We report evidence for quantized current blockade depending on the folding configuration and offer detailed information on the role of hydrodynamic correlations in speeding-up the tr...
June 9, 2012
Deformation of single stranded DNA in translocation process before reaching the pore is investigated. By solving the Laplace equation in a suitable coordinate system and with appropriate boundary conditions, an approximate solution for the electric field inside and outside of a narrow pore is obtained. With an analysis based on "electrohydrodynamic equivalence" we determine the possibility of extension of a charged polymer due to the presence of an electric field gradient in ...
January 16, 2009
Numerical results on the translocation of long biopolymers through mid-sized and wide pores are presented. The simulations are based on a novel methodology which couples molecular motion to a mesoscopic fluid solvent. Thousands of events of long polymers (up to 8000 monomers) are monitored as they pass through nanopores. Comparison between the different pore sizes shows that wide pores can host a larger number of multiple biopolymer segments, as compared to smaller pores. The...
May 7, 2009
We present results from our simulations of biopolymer translocation in a solvent which explain the main experimental findings. The forced translocation can be described by simple force balance arguments for the relevant range of pore potentials in experiments and biological systems. Scaling of translocation time with polymer length varies with pore force and friction. Hydrodynamics affects this scaling and significantly reduces translocation times.