January 2, 2007
Similar papers 2
December 18, 2018
The theoretical formulation of driven polymer translocation through nanopores is complicated by the combination of the pore electrohydrodynamics and the nonequilibrium polymer dynamics originating from the conformational polymer fluctuations. In this review, we discuss the modeling of polymer translocation in the distinct regimes of short and long polymers where these two effects decouple. For the case of short polymers where polymer fluctuations are negligible, we present a ...
January 10, 2024
We develop a computational method based on Dissipative Particle Dynamics (DPD) that introduces solvent hydrodynamic interactions to coarse-grained models of solutes, such as ions, molecules, or polymers. DPD-solvent (DPDS) is a fully off-lattice method that allows straightforward incorporation of hydrodynamics at desired solvent viscosity, compressibility and solute diffusivity with any particle-based solute model. Solutes interact with the solvent only through the DPD thermo...
May 24, 2023
Understanding intrusion and extrusion in nanoporous materials is a challenging multiscale problem of utmost importance for applications ranging from energy storage and dissipation to water desalination and hydrophobic gating in ion channels. Including atomistic details in simulations is required to predict the overall behavior of such systems, because the statics and dynamics of these processes depend sensitively on microscopic features of the pore such as the surface hydroph...
May 6, 2019
We discuss the Lattice Boltzmann-Particle Dynamics (LBPD) multiscale paradigm for the simulation of complex states of flowing matter at the interface between Physics, Chemistry and Biology. In particular, we describe current large-scale LBPD simulations of biopolymer translocation across cellular membranes, molecular transport in ion channels and amyloid aggregation in cells. We also provide prospects for future LBPD explorations in the direction of cellular organization, the...
January 22, 2003
The translocation of a macromolecule through a nanometer-sized pore is an interesting process with important applications in the development of biosensors for single--molecule analysis and in drug delivery and gene therapy. We have carried out a molecular dynamics simulation study of electrophoretic translocation of a charged polymer through an artificial nanopore to explore the feasibility of semiconductor--based nanopore devices for ultra--fast DNA sequencing. The polymer i...
November 6, 2008
Most of the theoretical models describing the translocation of a polymer chain through a nanopore use the hypothesis that the polymer is always relaxed during the complete process. In other words, models generally assume that the characteristic relaxation time of the chain is small enough compared to the translocation time that non-equilibrium molecular conformations can be ignored. In this paper, we use Molecular Dynamics simulations to directly test this hypothesis by looki...
September 5, 2002
Polymer translocation through a nanopore in a membrane investigated theoretically. Recent experiments on voltage-driven DNA and RNA translocations through a nanopore indicate that the size and geometry of the pore are important factors in polymer dynamics. A theoretical approach is presented which explicitly takes into account the effect of the nanopore length and diameter for polymer motion across the membrane. It is shown that the length of the pore is crucial for polymer t...
November 18, 2014
The coarse-grained molecular dynamics (MD) or Brownian dynamics (BD) simulation is a particle-based approach that has been applied to a wide range of biological problems that involve interactions with surrounding fluid molecules or the so-called hydrodynamic interactions (HIs). In this paper, an efficient algorithm is proposed to simulate the motion of a single DNA molecule in linear flows. The algorithm utilizes the integraing factor to cope with the effect of the linear flo...
January 8, 2018
A hybrid computational method coupling the lattice-Boltzmann (LB) method and a Langevin-dynamics (LD) method is developed to simulate nanoscale particle and polymer (NPP) suspensions in the presence of both thermal fluctuation and long-range many-body hydrodynamic interactions (HI). Brownian motion of the NPP is explicitly captured by a stochastic forcing term in the LD method. The LD method is two-way coupled to the non-fluctuating LB fluid through a discrete LB forcing sour...
August 21, 2013
In recent years polymer translocation, i.e., transport of polymeric molecules through nanometer-sized pores and channels embedded in membranes, has witnessed strong advances. It is now possible to observe single-molecule polymer dynamics during the motion through channels with unprecedented spatial and temporal resolution. These striking experimental studies have stimulated many theoretical developments. In this short theory-experiment review, we discuss recent progress in th...