December 15, 2003
Similar papers 2
December 16, 2010
Complex networks can often be decomposed into less complex sub-networks whose structures can give hints about the functional organization of the network as a whole. However, these structural motifs can only tell one part of the functional story because in this analysis each node and edge is treated on an equal footing. In real networks, two motifs that are topologically identical but whose nodes perform very different functions will play very different roles in the network. H...
May 6, 2024
Gene duplication is a fundamental evolutionary mechanism that contributes to biological complexity and diversity (Fortna et al., 2004). Traditionally, research has focused on the duplication of gene sequences (Zhang, 1914). However, evidence suggests that the duplication of regulatory elements may also play a significant role in the evolution of genomic functions (Teichmann and Babu, 2004; Hallin and Landry, 2019). In this work, the evolution of regulatory relationships belon...
April 19, 2005
Network motifs, the recurring regulatory structural patterns in networks, are able to self-organize to produce networks. Three major motifs, feedforward loop, single input modules and bi-fan are found in gene regulatory networks. The large ratio of genes to transcription factors (TFs) in genomes leads to a sharing of TFs by motifs and is sufficient to result in network self-organization. We find a common design principle of these motifs: short transcript's half-life (THL) TFs...
March 5, 2019
Network motifs can capture basic interaction patterns and inform the functional properties of networks. However, real-world complex systems often have multiple types of relationships, which cannot be represented by a monolayer network. The multilayer nature of complex systems demands research on extending the notion of motifs to multilayer networks, thereby exploring the interaction patterns with a higher resolution. In this paper, we propose a formal definition of multilayer...
May 13, 2016
A determinant property of the structure of a biological network is the distribution of local connectivity patterns, i.e., network motifs. In this work, a method for creating directed, unweighted networks while promoting a certain combination of motifs is presented. This motif-based network algorithm starts with an empty graph and randomly connects the nodes by advancing or discouraging the formation of chosen motifs. The in- or out-degree distribution of the generated network...
September 7, 2004
Many real-world networks describe systems in which interactions decay with the distance between nodes. Examples include systems constrained in real space such as transportation and communication networks, as well as systems constrained in abstract spaces such as multivariate biological or economic datasets and models of social networks. These networks often display network motifs: subgraphs that recur in the network much more often than in randomized networks. To understand t...
September 9, 2011
Topological network motifs represent functional relationships within and between regulatory and protein-protein interaction networks. Enriched motifs often aggregate into self-contained units forming functional modules. Theoretical models for network evolution by duplication-divergence mechanisms and for network topology by hierarchical scale-free networks have suggested a one-to-one relation between network motif enrichment and aggregation, but this relation has never been t...
July 8, 2010
Studying the topology of so-called real networks, that is networks obtained from sociological or biological data for instance, has become a major field of interest in the last decade. One way to deal with it is to consider that networks are built from small functional units called motifs, which can be found by looking for small subgraphs whose numbers of occurrences in the whole network are surprisingly high. In this article, we propose to define motifs through a local overre...
July 27, 2009
The identification of motifs--subgraphs that appear significantly more often in a particular network than in an ensemble of randomized networks--has become a ubiquitous method for uncovering potentially important subunits within networks drawn from a wide variety of fields. We find that the most common algorithms used to generate the ensemble from the real network change subgraph counts in a highly correlated manner, so that one subgraph's status as a motif may not be indepen...
March 22, 2024
We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Cru...