July 30, 2015
In the course of the growth of the Internet and due to increasing availability of data, over the last two decades, the field of network science has established itself as an own area of research. With quantitative scientists from computer science, mathematics, and physics working on datasets from biology, economics, sociology, political sciences, and many others, network science serves as a paradigm for interdisciplinary research. One of the major goals in network science is t...
February 19, 2018
Networks are a fundamental model of complex systems throughout the sciences, and network datasets are typically analyzed through lower-order connectivity patterns described at the level of individual nodes and edges. However, higher-order connectivity patterns captured by small subgraphs, also called network motifs, describe the fundamental structures that control and mediate the behavior of many complex systems. We develop three tools for network analysis that use higher-ord...
November 13, 2018
In neural networks with identical neurons, the matrix of connection weights completely describes the network structure and thereby determines how it is processing information. However, due to the non-linearity of these systems, it is not clear if similar microscopic connection structures also imply similar functional properties, or if a network is impacted more by macroscopic structural quantities, such as the ratio of excitatory and inhibitory connections (balance), or the r...
April 10, 2013
Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade the overabundance of certain sub-network patterns, so called motifs, has attracted high attention. It has been hypothesized, these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its functio...
November 27, 2023
Physical and functional constraints on biological networks lead to complex topological patterns across multiple scales in their organization. A particular type of higher-order network feature that has received considerable interest is network motifs, defined as statistically regular subgraphs. These may implement fundamental logical and computational circuits and are referred as ``building blocks of complex networks''. Their well-defined structures and small sizes also enable...
January 29, 2020
Analysis of the structure of biological networks often uses statistical tests to establish the over-representation of motifs, which are thought to be important building blocks of such networks, related to their biological functions. However, there is disagreement as to the statistical significance of these motifs, and there are potential problems with standard methods for estimating this significance. Exponential random graph models (ERGMs) are a class of statistical model th...
June 5, 2014
Many real world networks contain a statistically surprising number of certain subgraphs, called network motifs. In the prevalent approach to motif analysis, network motifs are detected by comparing subgraph frequencies in the original network with a statistical null model. In this paper we propose an alternative approach to motif analysis where network motifs are defined to be connectivity patterns that occur in a subgraph cover that represents the network using minimal total...
November 20, 2014
Network motifs are overrepresented interconnection patterns found in real-world networks. What functional advantages may they offer for building complex systems? We show that most network motifs emerge from interconnections patterns that best exploit the intrinsic stability characteristics of individual nodes. This feature is observed at different scales in a network, from nodes to modules, suggesting an efficient mechanism to stably build complex systems.
May 27, 2020
One of the most important concepts in biological network analysis is that of network motifs, which are patterns of interconnections that occur in a given network at a frequency higher than expected in a random network. In this work we are interested in searching and inferring network motifs in a class of biological networks that can be represented by vertex-colored graphs. We show the computational complexity for many problems related to colorful topological motifs and presen...
April 22, 2011
Gene regulatory networks arise in all living cells, allowing the control of gene expression patterns. The study of their topology has revealed that certain subgraphs of interactions or "motifs" appear at anomalously high frequencies. We ask here whether this phenomenon may emerge because of the functions carried out by these networks. Given a framework for describing regulatory interactions and dynamics, we consider in the space of all regulatory networks those that have a pr...