May 29, 2004
Similar papers 4
Aging is thought to be a consequence of intrinsic breakdowns in how genetic information is processed. But mounting experimental evidence suggests that aging can be slowed. To help resolve this mystery, I derive a mortality equation which characterizes the dynamics of an evolving population with a given maximum age. Remarkably, while the spectrum of eigenvalues that govern the evolution depends on the fitness, how they change with the maximum age is independent of fitness. Thi...
July 7, 2024
Based on the study of cellular aging using the single-cell model organism of budding yeast and corroborated by other studies, we propose the Emergent Aging Model (EAM). EAM hypothesizes that aging is an emergent property of complex biological systems, exemplified by biological networks such as gene networks. An emergent property refers to traits that a system has at the system level but which its low-level components do not. EAM is based on a quantitative definition of aging ...
June 12, 2013
We live within an increasingly technological, information-laden environment for the first time in human evolution.This subjects us, and will continue to subject us in an accelerating fashion, to an unremitting exposure to meaningful information that requires action. Directly dependent upon this new environment are novel evolutionary pressures, which can modify existing resource allocation mechanisms and may eventually favor the survival of somatic cells,particularly neurons, ...
July 23, 2001
Since its proposition in 1995, the Heumann-Hotzel model has remained as an obscure model of biological aging. The main arguments used against it were its apparent inability to describe populations with many age intervals and its failure to prevent a population extinction when only deleterious mutations are present. We find that with a simple and minor change in the model these difficulties can be surmounted. Our numerical simulations show a plethora of interesting features: t...
October 3, 2024
This extended abstract was presented at the Nectar Track of ECML PKDD 2024 in Vilnius, Lithuania. The content supplements a recently published paper "Laws of Macroevolutionary Expansion" in the Proceedings of the National Academy of Sciences (PNAS).
November 7, 2018
Estimating the human longevity and computing of life expectancy are central to the population dynamics. These aspects were studied seriously by scientists since fifteenth century, including renowned astronomer Edmund Halley. From basic principles of population dynamics, we propose a method to compute life expectancy from incomplete data.
April 16, 2021
There is sustained and widespread interest in understanding the limit, if any, to the human lifespan. Apart from its intrinsic and biological interest, changes in survival in old age have implications for the sustainability of social security systems. A central question is whether the endpoint of the underlying lifetime distribution is finite. Recent analyses of data on the oldest human lifetimes have led to competing claims about survival and to some controversy, due in part...
June 15, 2020
Metabolic energy consumption has long been thought to play a major role in the aging process ({\it 1}). Across species, a gram of tissue on average expends about the same amount of energy during life-span ({\it 2}). Energy restriction has also been shown that increases maximum life-span ({\it 3}) and retards age-associated changes ({\it 4}). However, there are significant exceptions to a universal energy consumption during life-span, mainly coming from the inter-class compari...
October 8, 1999
The physical idea of the natural origin of diseases and deaths has been presented. The fundamental microscopical reason is the destruction of any metastable state by thermal activation of a nucleus of a nonreversable change. On the basis of this idea the quantitative theory of age dependence of death probability has been constructed. The obtained simple Death Laws are very accurately fulfilled almost for all known diseases.
April 22, 2004
The Gompertz model since 1825 has significantly contributed to interpretation of ageing in biological and social sciences. However, in modern research findings, it is clear that the Gompertz model is not successful to describe the whole demographic trajectories. In this letter, a new demographic model is introduced especially to describe human demographic trajectories, for example, for Sweden (2002). The new model is derived from the Weibull model with an age-dependent shape ...