June 15, 2005
Similar papers 2
August 23, 2017
Spatially extended population dynamics models that incorporate intrinsic noise serve as case studies for the role of fluctuations and correlations in biological systems. Including spatial structure and stochastic noise in predator-prey competition invalidates the deterministic Lotka-Volterra picture of neutral population cycles. Stochastic models yield long-lived erratic population oscillations stemming from a resonant amplification mechanism. In spatially extended predator-p...
March 9, 1994
We propose a stochastic lattice gas model to describe the dynamics of two animal species population, one being a predator and the other a prey. This model comprehends the mechanisms of the Lotka-Volterra model. Our analysis was performed by using a dynamical mean-field approximation and computer simulations. Our results show that the system exhibits an oscillatory behavior of the population densities of prey and predators. For the sets of parameters used in our computer simul...
May 8, 2007
We consider a probabilistic cellular automaton to analyze the stochastic dynamics of a predator-prey system. The local rules are Markovian and are based in the Lotka-Volterra model. The individuals of each species reside on the sites of a lattice and interact with an unsymmetrical neighborhood. We look for the effect of the space anisotropy in the characterization of the oscillations of the species population densities. Our study of the probabilistic cellular automaton is bas...
April 30, 2015
Many existing studies on pattern formation in the reaction-diffusion systems rely on deterministic models. However, environmental noise is often a major factor which leads to significant changes in the spatiotemporal dynamics. In this paper, we focus on the spatiotemporal patterns produced by the predator-prey model with ratio-dependent functional response and density dependent death rate of predator. We get the reaction-diffusion equations incorporating the self-diffusion te...
January 11, 2019
Different evolutionary models are known to make disparate predictions for the success of an invading mutant in some situations. For example, some evolutionary mechanics lead to amplification of selection in structured populations, while others suppress it. Here, we use computer simulations to study evolutionary populations moved by flows, and show how the speed of this motion impacts the fixation probability of an invading mutant. Flows of different speeds interpolate between...
November 8, 2021
Antipredator behavior is present in many biological systems where individuals collectively react to an imminent attack. The antipredator response may influence spatial pattern formation and ecosystem stability but requires an organism's cost to contribute to the collective effort. We investigate a nonhierarchical tritrophic system, whose predator-prey interactions are described by the rock-paper-scissors game rules. In our spatial stochastic simulations, the radius of antipre...
May 17, 2019
Differential diffusion is a source of instability in population dynamics systems when species diffuse with different rates. Predator-prey systems show this instability only under certain specific conditions, usually requiring Holling-type functionals involved. Here we study the effects of intraspecific cooperation and competition on diffusion-driven instability in a predator-prey system with a different structure. We conduct the analysis on a generalized population dynamics t...
July 2, 2024
Diffusion plays an important role in a wide variety of phenomena, from bacterial quorum sensing to the dynamics of traffic flow. While it generally tends to level out gradients and inhomogeneities, diffusion has nonetheless been shown to promote pattern formation in certain classes of systems. Formation of stable structures often serves as a key factor in promoting the emergence and persistence of cooperative behavior in otherwise competitive environments, however an in-depth...
November 11, 2013
Due to recent advances in synthetic biology and artificial life, the origin of life is currently a hot topic of research. We review the literature and argue that the two traditionally competing "replicator-first" and "metabolism-first" approaches are merging into one integrated theory of individuation and evolution. We contribute to the maturation of this more inclusive approach by highlighting some problematic assumptions that still lead to an impoverished conception of the ...
November 10, 2009
We describe pattern formation in ecological systems using a version of the classical Lotka-Volterra model characterized by a spatial scale which controls the predator-prey interaction range. Analytical and simulational results show that patterns can emerge in some regions of the parameters space where the instability is driven by the range of the interaction. The individual-based implementation captures realistic ecological features. In fact, spatial structures emerge in an e...