June 15, 2005
Similar papers 3
March 27, 2004
We have generalized our ``unified'' model of evolutionary ecology by taking into account the possible movements of the organisms from one ``patch'' to another within the same eco-system. We model the spatial extension of the eco-system (i.e., the geography) by a square lattice where each site corresponds to a distinct ``patch''. A self-organizing hierarchical food web describes the prey-predator relations in the eco-system. The same species at different patches have identical...
November 7, 2017
This work reports on two related investigations of stochastic simulations which are widely used to study biodiversity and other related issues. We first deal with the behavior of the Hamming distance under the increase of the number of species and the size of the lattice, and then investigate how the mobility of the species contributes to jeopardize biodiversity. The investigations are based on the standard rules of reproduction, mobility and predation or competition, which a...
August 29, 2017
This work deals with a system of three distinct species that changes in time under the presence of mobility, selection, and reproduction, as in the popular rock-paper-scissors game. The novelty of the current study is the modification of the mobility rule to the case of directional mobility, in which the species move following the direction associated to a larger (averaged) number density of selection targets in the surrounding neighborhood. Directional mobility can be used t...
March 18, 2007
We present a spatial, individual-based predator-prey model in which dispersal is dependent on the local community. We determine species suitability to the biotic conditions of their local environment through a time and space varying fitness measure. Dispersal of individuals to nearby communities occurs whenever their fitness falls below a predefined tolerance threshold. The spatiotemporal dynamics of the model is described in terms of this threshold. We compare this dynamics ...
August 31, 2016
We consider a two-dimensional model of three species in rock-paper-scissors competition and study the self-organisation of the population into fascinating spiraling patterns. Within our individual-based metapopulation formulation, the population composition changes due to cyclic dominance (dominance-removal and dominance-replacement), mutations, and pair-exchange of neighboring individuals. Here, we study the influence of mobility on the emerging patterns and investigate when...
July 11, 2014
We are interested in the impact of natural selection in a prey-predator community. We introduce an individual-based model of the community that takes into account both prey and predator phenotypes. Our aim is to understand the phenotypic coevolution of prey and predators. The community evolves as a multi-type birth and death process with mutations. We first consider the infinite particle approximation of the process without mutation. In this limit, the process can be approxim...
April 2, 2020
Deterministic continuum models formulated in terms of non-local partial differential equations for the evolutionary dynamics of populations structured by phenotypic traits have been used recently to address open questions concerning the adaptation of asexual species to periodically fluctuating environmental conditions. These deterministic continuum models are usually defined on the basis of population-scale phenomenological assumptions and cannot capture adaptive phenomena th...
July 11, 2022
We identify a mechanism for biological spatial pattern formation arising when the signals that mediate interactions between individuals in a population have pulsed character. Our general population-signal framework shows that while for a slow signal-dynamics limit no pattern formation is observed for any values of the model parameters, for a fast limit, on the contrary, pattern formation can occur. Furthermore, at these limits, our framework reduces, respectively, to reaction...
April 3, 2006
The interplay between space and evolution is an important issue in population dynamics, that is in particular crucial in the emergence of polymorphism and spatial patterns. Recently, biological studies suggest that invasion and evolution are closely related. Here we model the interplay between space and evolution starting with an individual-based approach and show the important role of parameter scalings on clustering and invasion. We consider a stochastic discrete model with...
December 12, 2020
A key question in evolution is how likely a mutant is to take over. This depends on natural selection and on stochastic fluctuations. Population spatial structure can impact mutant fixation probabilities. We introduce a model for structured populations on graphs that generalizes previous ones by making migrations independent of birth and death. We demonstrate that by tuning migration asymmetry, the star graph transitions from amplifying to suppressing natural selection. The r...