April 20, 2001
Similar papers 2
May 18, 2016
Single photon avalanche diodes (SPADs) are the most commercially diffused solution for single-photon counting in quantum key distribution (QKD) applications. However, the secondary photon emission, arising from the avalanche of charge carriers during a photon detection, may be exploited by an eavesdropper to gain information without forcing errors in the transmission key. In this paper, we characterise such backflash light in gated InGaAs/InP SPADs, and its spectral and tempo...
January 26, 2015
Single-photon detectors (SPDs) are the most sensitive instruments for light detection. In the near-infrared range, SPDs based on III-V compound semiconductor avalanche photodiodes have been extensively used during the past two decades for diverse applications due to their advantages in practicality including small size, low cost and easy operation. In the past decade, the rapid developments and increasing demands in quantum information science have served as key drivers to im...
November 28, 2019
We experimentally demonstrate optical control of negative-feedback avalanche diode (NFAD) detectors using bright light. We deterministically generate fake single-photon detections with a better timing precision than normal operation. This could potentially open a security loophole in quantum cryptography systems. We then show how monitoring the photocurrent through the avalanche photodiode can be used to reveal the detector is being blinded.
July 15, 2008
We present recent results on our development of single photon detectors, including: gated and free-running InGaAs/InP avalanche photodiodes; hybrid detection systems based on sum-frequency generation and Si APDs; and SSPDs (superconducting single photon detectors), for telecom wavelengths; as well as SiPM (Silicon photomultiplier) detectors operating in the visible regime.
August 26, 2010
The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illuminat...
August 21, 2012
We present a gated silicon single photon detector based on a commercially available avalanche photodiode. Our detector achieves a photon detection efficiency of 45\pm5% at 808 nm with 2x 10^-6 dark count per ns at -30V of excess bias and -30{\deg}C. We compare gated and free-running detectors and show that this mode of operation has significant advantages in two representative experimental scenarios: detecting a single photon either hidden in faint continuous light or after a...
May 18, 2008
In this paper we present a novel construction of an active quenching circuit intended for single photon detection. For purpose of evaluation, we have combined this circuit with a standard avalanche photodiode C30902S to form a single photon detector. A series of measurements, presented here, show that this single photon detector has a dead time of less than 40ns, maximum random counting frequency of over 14MHz, low after pulsing, detection efficiency of over 20% and a good no...
July 26, 2007
Single photon detectors based on passively-quenched avalanche photodiodes can be temporarily blinded by relatively bright light, of intensity less than a nanowatt. I describe a bright-light regime suitable for attacking a quantum key distribution system containing such detectors. In this regime, all single photon detectors in the receiver Bob are uniformly blinded by continuous illumination coming from the eavesdropper Eve. When Eve needs a certain detector in Bob to produce ...
July 2, 2008
Avalanche photodiodes are widely used as practical detectors of single photons.1 Although conventional devices respond to one or more photons, they cannot resolve the number in the incident pulse or short time interval. However, such photon number resolving detectors are urgently needed for applications in quantum computing,2-4 communications5 and interferometry,6 as well as for extending the applicability of quantum detection generally. Here we show that, contrary to current...
June 7, 2020
InGaAs single-photon avalanche photodiodes (APDs) are key enablers for high-bit rate quantum key distribution. However, the deviation of such detectors from ideal models can open side-channels for an eavesdropper, Eve, to exploit. The phenomenon of backflashes, whereby APDs reemit photons after detecting a photon, gives Eve the opportunity to passively learn the information carried by the detected photon without the need to actively interact with the legitimate receiver, Bob....