April 27, 2006
We describe recent progress towards deriving the Fundamental Laws of thermodynamics (the 0th, 1st and 2nd Law) from nonequilibrium quantum statistical mechanics in simple, yet physically relevant models. Along the way, we clarify some basic thermodynamic notions and discuss various reversible and irreversible thermodynamic processes from the point of view of quantum statistical mechanics.
May 29, 2014
We propose experimental methods to engineer reservoirs at arbitrary temperature which are feasible with current technology. Our results generalize to mixed states the possibility of quantum state engineering through controlled decoherence. Finite temperature engineered reservoirs can lead to the experimental observation of thermal entanglement --the appearance and increase of entanglement with temperature-- to the study of the dependence of finite time disentanglement and rev...
October 4, 2018
We identify and explore the intriguing property of resource resonance arising within resource theories of entanglement, coherence and thermodynamics. While the theories considered are reversible asymptotically, the same is generally not true in realistic scenarios where the available resources are bounded. The finite-size effects responsible for this irreversibility could potentially prohibit small quantum information processors or thermal machines from achieving their full p...
March 23, 2022
We propose an approach to the realization of many-body quantum state distributions inspired by combined principles of thermodynamics and mesoscopic physics. Its essence is a maximum entropy principle conditioned by conservation laws. We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities. The result are quantum state distributions whose deviations from `thermal states' get more pronounced in the limit of wide input distribut...
April 25, 2012
Here we investigate the impact of temporal entanglement on a system's ability to perform thermodynamical work. We show that while the quantum version of the Jarzynski equality remains satisfied even in the presence of temporal entanglement, the individual thermodynamical work moments in the expansion of the free energy are, in fact, sensitive to the genuine quantum correlations. Therefore, while individual moments of the amount of thermodynamical work can be larger (or smalle...
February 20, 2020
In this paper, the foundations of classical phenomenological thermodynamics are being thoroughly revisited. A new rigorous basis for thermodynamics is laid out in the main text and presented in full detail in the appendix. All relevant concepts, such as work, heat, internal energy, heat reservoirs, reversibility, absolute temperature and entropy, are introduced on an abstract level and connected through traditional results, such as Carnot's Theorem, Clausius' Theorem and the ...
May 9, 2014
Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations revea...
March 7, 2024
We investigate the thermodynamic constraints on the pivotal task of entanglement generation using out-of-equilibrium states through a model-independent framework with minimal assumptions. We establish a necessary and sufficient condition for a thermal process to generate bipartite qubit entanglement, starting from an initially separable state. Consequently, we identify the set of system states that cannot be entangled, when no external work is invested. In the regime of infin...
November 7, 2015
From black hole thermodynamics, the Bekenstein bound has been proposed as a universal thermal entropy bound. It has been further generalized to an entanglement entropy bound which is valid even in a quantum system. In a quantumly entangled system, the non-negativity of the relative entropy leads to the entanglement entropy bound. When the entanglement entropy bound is saturated, a quantum system satisfies the thermodynamics-like law with an appropriately defined entanglement ...
July 30, 2018
I give a self-contained introduction to the resource theory approach to quantum thermodynamics. I will introduce in an elementary manner the technical machinery necessary to unpack and prove the core statements of the theory. The topics covered include the so-called `many second laws of thermodynamics', thermo-majorisation and symmetry constraints on the evolution of quantum coherence. Among the elementary applications, I explicitly work out the bounds on deterministic work e...