August 11, 2014
This paper provides an alternative approach to the problem of preparing pure Gaussian states in a linear quantum system. It is shown that any pure Gaussian state can be generated by a cascade of one-dimensional open quantum harmonic oscillators, without any direct interaction Hamiltonians between these oscillators. This is physically advantageous from an experimental point of view. An example on the preparation of two-mode squeezed states is given to illustrate the theory.
July 9, 2016
This article focuses on the general theory of open quantum systems in the Gaussian regime and explores a number of diverse ramifications and consequences of the theory. We shall first introduce the Gaussian framework in its full generality, including a classification of Gaussian (also known as "general-dyne") quantum measurements. In doing so, we will give a compact proof for the parametrisation of the most general Gaussian completely positive map, which we believe to be miss...
July 20, 2022
Wigner function tomography is indispensable for characterizing quantum states, but its commonly used version, balanced homodyne detection, suffers from several weaknesses. First, it requires efficient detection, which is critical for measuring fragile non-Gaussian states, especially bright ones. Second, it needs a local oscillator, tailored to match the spatiotemporal properties of the state under test, and fails for multimode and broadband states. Here we propose Wigner func...
January 17, 2022
Simulating quantum states on a classical computer is hard, typically requiring prohibitive resources in terms of memory and computational power. Efficient simulation, however, can be achieved for certain classes of quantum states, in particular the so-called Gaussian quantum states of continuous variable systems. In this work we introduce QuGIT - a python numerical toolbox based on symplectic methods specialized in efficiently simulating multimode Gaussian states and operatio...
April 23, 2021
With the successes of the Laser Interferometer Gravitational-wave Observatory, we anticipate increased interest in working with squeezed states in the undergraduate and graduate quantum-mechanics classroom. Because squeezed-coherent states are minimum uncertainty states, their wavefunctions in position and momentum space must be Gaussians. But this result is rarely discussed in treatments of squeezed states in quantum textbooks or quantum optics textbooks. In this work, we sh...
June 21, 2004
We consider an ensemble of trapped atoms interacting with a continuous wave laser field. For sufficiently polarized atoms and for a polarized light field, we may approximate the non-classical components of the collective spin angular momentum operator for the atoms and the Stokes vectors of the field by effective position and momentum variables for which we assume a gaussian state. Within this approximation, we present a theory for the squeezing of the atomic spin by polariza...
July 27, 2009
Quantum models for synchronously pumped type I optical parametric oscillators (SPOPO) are presented. The study of the dynamics of SPOPOs, which typically involves millions of coupled signal longitudinal modes, is significantly simplified when one considers the ?supermodes?, which are independent linear superpositions of all the signal modes diagonalizing the parametric interaction. In terms of these supermodes the SPOPO dynamics becomes that of about a hundred of independent,...
November 12, 2024
Squeezed light plays a vital role in quantum information processing. By nature, it is highly sensitive, which presents significant practical challenges, particularly in remote detection, traditionally requiring complex systems such as active phase locking, clock synchronization, and polarization control. Here, we propose and demonstrate an asynchronous detection method for squeezed light that eliminates the need for these complex systems. By employing radio-frequency heterody...
July 1, 2014
The ability to engineer the quantum state of traveling optical fields is a central requirement for quantum information science and technology, including quantum communication, computing and metrology. In this video article, we describe the reliable generation of non-Gaussian states, including single-photon states and coherent state superpositions, using a conditional preparation method operated on the non-classical light emitted by optical parametric oscillators. Type-I and t...
January 2, 2019
Quantum state smoothing is a technique for assigning a valid quantum state to a partially observed dynamical system, using measurement records both prior and posterior to an estimation time. We show that the technique is greatly simplified for Linear Gaussian quantum systems, which have wide physical applicability. We derive a closed-form solution for the quantum smoothed state, which is more pure than the standard filtered state, whilst still being described by a physical qu...