May 31, 2010
Both discrete and continuous systems can be used to encode quantum information. Most quantum computation schemes propose encoding qubits in two-level systems, such as a two-level atom or an electron spin. Others exploit the use of an infinite-dimensional system, such as a harmonic oscillator. In "Encoding a qubit in an oscillator" [Phys. Rev. A 64 012310 (2001)], Gottesman, Kitaev, and Preskill (GKP) combined these approaches when they proposed a fault-tolerant quantum comput...
September 21, 2015
We consider the quantum (trajectories) filtering equation for the case when the system is driven by Bose field inputs prepared in an arbitrary non-zero mean Gaussian state. The a posteriori evolution of the system is conditioned by the results of a single or double homodyne measurements. The system interacting with the Bose field is a single cavity mode taken initially in a Gaussian state. We show explicit solutions using the method of characteristic functions to the filterin...
April 28, 2007
We present the observation of optical fields carrying squeezed vacuum states at sideband frequencies from 10Hz to above 35MHz. The field was generated with type-I optical parametric oscillation below threshold at 1064nm. A coherent, unbalanced classical modulation field at 40MHz enabled the generation of error signals for stable phase control of the squeezed vacuum field with respect to a strong local oscillator. Broadband squeezing of approximately -4dB was measured with bal...
October 14, 2011
The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quant...
September 28, 2004
We present a theory for the estimation of a scalar or a vector magnetic field by its influence on an ensemble of trapped spin polarized atoms. The atoms interact off-resonantly with a continuous laser field, and the measurement of the polarization rotation of the probe light, induced by the dispersive atom-light coupling, leads to spin-squeezing of the atomic sample which enables an estimate of the magnetic field which is more precise than that expected from standard counting...
March 23, 1999
A recent proposal of new sets of squeezed states is seen as a particular case of a general context admitting realistic physical Hamiltonians. Such improvements reveal themselves helpful in the study of associated squeezing effects. Coherence is also considered.
May 30, 2014
We derive the filtering equation for Markovian systems undergoing homodyne measurement in the situation where the output processes being monitored are squeezed. The filtering theory applies to case where the system is driven by Fock noise (that, quantum input processes in a coherent state) and where the output is mixed with a squeezed signal. It also applies to the case of a system driven by squeezed noise, but here there is a physical restriction to emission/absorption coupl...
May 14, 2002
In this paper we present a state vector analysis of the generation of atomic spin squeezing by measurement of an optical phase shift. The frequency resolution is improved when a spin squeezed sample is used for spectroscopy in place of an uncorrelated sample. When light is transmitted through an atomic sample some photons will be scattered out of the incident beam, and this has a destructive effect on the squeezing. We present quantitative studies for three limiting cases: th...
February 27, 2023
Continuous measurements of the position of an oscillator become projective on position eigenstates when the measurements are made faster than the coherent evolution. We evidence an effect of this transition on a spin oscillator within an ensemble of $2\times10^{10}$ room-temperature atoms by observing correlations between the quadratures of the meter light field. These correlations squeeze the fluctuations of the light quadratures below the vacuum level. When the measurement ...
April 8, 2003
We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme is tested by means of Monte Carlo simulated experiments. We then consid...