June 20, 2006
We investigate the feasibility of combining Raman optical lattices with a quantum computing architecture based on lattice-confined magnetically interacting neutral atoms. A particular advantage of the standing Raman field lattices comes from reduced interatomic separations leading to increased interatomic interactions and improved multi-qubit gate performance. Specifically, we analyze a $J=3/2$ Zeeman system placed in $% \sigma _{+}-\sigma_{-}$ Raman fields which exhibit $\lambda /4$ periodicity. We find that the resulting CNOT gate operations times are in the order of millisecond. We also investigate motional and magnetic-field induced decoherences specific to the proposed architecture.
Similar papers 1
June 16, 2004
We propose a scalable quantum-computing architecture based on cold atoms confined to sites of a tight optical lattice. The lattice is placed in a non-uniform magnetic field and the resulting Zeeman sublevels define qubit states. Microwave pulses tuned to space-dependent resonant frequencies are used for individual addressing. The atoms interact via magnetic-dipole interactions allowing implementation of a universal controlled-NOT gate. The resulting gate operation times for a...
July 13, 2011
We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits require the transport of atoms to neighboring sites. We numerically optimize the non-adiabatic transport of the atoms through the lattice and the intensity ramps of the optical tweezer in...
March 6, 2000
We present a proposal for quantum information processing with neutral atoms trapped in optical lattices as qubits. Initialization and coherent control of single qubits can be achieved with standard laser cooling and spectroscopic techniques. We consider entangling two-qubit logic gates based on optically induced dipole-dipole interactions, calculating a figure-of-merit for various protocols. Massive parallelism intrinsic to the lattice geometry makes this an intriguing system...
March 25, 2011
We propose a scheme for quantum computation in optical lattices. The qubits are encoded in the spacial wavefunction of the atoms such that spin decoherence does not influence the computation. Quantum operations are steered by shaking the lattice while qubit addressability can be provided with experimentally available techniques of changing the lattice with single-site resolution. Numerical calculations show possible fidelities above 99% with gate times on the order of millise...
April 11, 2008
We make a detailed analysis of error mechanisms, gate fidelity, and scalability of proposals for quantum computation with neutral atoms in addressable (large lattice constant) optical lattices. We have identified possible limits to the size of quantum computations, arising in 3D optical lattices from current limitations on the ability to perform single qubit gates in parallel and in 2D lattices from constraints on laser power. Our results suggest that 3D arrays as large as 10...
October 24, 2011
We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of one flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lea...
January 13, 1998
We study the means to prepare and coherently manipulate atomic wave packets in optical lattices, with particular emphasis on alkali atoms in the far-detuned limit. We derive a general, basis independent expression for the lattice operator, and show that its off-diagonal elements can be tailored to couple the vibrational manifolds of separate magnetic sublevels. Using these couplings one can evolve the state of a trapped atom in a quantum coherent fashion, and prepare pure qua...
May 9, 2011
We introduce a fully coherent way for directed transport of localized atoms in optical lattices by regularly performing phase shifts on the lattice potential during the free evolution of the system. This paves the way for realizing a possible cold atom quantum computer in which entangling gates operate by bringing two individual atoms in the proximity of each other and letting them to interact. The speed of our protocol is determined by the tunneling amplitudes of the atoms a...
March 17, 2014
We show that the coherent coupling of atomic qubits at distant nodes of a quantum network, composed of several cavities linked by optical fibers, can be arbitrarily controlled via the selective pairing of Raman transitions. The adiabatic elimination of the atomic excited states and photonic states leads to selective qubit-qubit interactions, which would have important applications in quantum information processing. Quantum gates between any pair of distant qubits and parallel...
February 10, 2014
Steps towards implementing a collision based two-qubit gate in optical lattices have previously been realized by the parallel merging all pairs of atoms in a periodicity two superlattice. In contrast, we propose an architecture which allows for the merger of a selected qubit pair in a novel long-periodicity superlattice structure consisting of two optical lattices with close-lying periodicity. We numerically optimize the gate time and fidelity, including the effects on neighb...