June 20, 2006
Similar papers 2
April 4, 2003
We investigate the dynamics of neutral atoms in a 2D optical lattice which traps two distinct internal states of the atoms in different columns. Two Raman lasers are used to coherently transfer atoms from one internal state to the other, thereby causing hopping between the different columns. By adjusting the laser parameters appropriately we can induce a non vanishing phase of particles moving along a closed path on the lattice. This phase is proportional to the enclosed area...
June 12, 2003
We present a quantum computing scheme with atomic Josephson junction arrays. The system consists of a small number of atoms with three internal states and trapped in a far-off resonant optical lattice. Raman lasers provide the "Josephson" tunneling, and the collision interaction between atoms represent the "capacitive" couplings between the modes. The qubit states are collective states of the atoms with opposite persistent currents. This system is closely analogous to the sup...
September 22, 2010
We propose a scalable neutral atom quantum computer with an on-demand interaction. Artificial lattice of near field optical traps is employed to trap atom qubits. Interactions between atoms can be turned off if the atoms are separated by a high enough potential barrier so that the size of the atomic wave function is much less than the interatomic distance. One-qubit gate operation is implemented by a gate control laser beam which is attached to an individual atom. Two-qubit g...
July 16, 2023
We implemented a scalable platform for quantum sensing comprising hundreds of sites capable of holding individual laser-cooled atoms and demonstrate the applicability of this single-quantum-system sensor array to magnetic-field mapping on a two-dimensional grid. With each atom being confined in an optical tweezerwithin an area of 0.5 micrometer^2 at mutual separations of 7.0(2) micrometer, we obtain micrometer-scale spatial resolution and highly parallelized operation. An add...
May 18, 2006
We review our experiments on quantum information processing with neutral atoms in optical lattices and magnetic microtraps. Atoms in an optical lattice in the Mott insulator regime serve as a large qubit register. A spin-dependent lattice is used to split and delocalize the atomic wave functions in a controlled and coherent way over a defined number of lattice sites. This is used to experimentally demonstrate a massively parallel quantum gate array, which allows the creatio...
June 22, 2020
The manipulation of neutral atoms by light is at the heart of countless scientific discoveries in the field of quantum physics in the last three decades. The level of control that has been achieved at the single particle level within arrays of optical traps, while preserving the fundamental properties of quantum matter (coherence, entanglement, superposition), makes these technologies prime candidates to implement disruptive computation paradigms. In this paper, we review the...
February 9, 2010
Remarkable progress towards realizing quantum computation has been achieved using natural and artificial atoms as qubits. This article presents a brief overview of the current status of different types of qubits. On the one hand, natural atoms (such as neutral atoms and ions) have long coherence times, and could be stored in large arrays, providing ideal "quantum memories". On the other hand, artificial atoms (such as superconducting circuits or semiconductor quantum dots) ha...
June 6, 1998
We propose a new system for implementing quantum logic gates: neutral atoms trapped in a very far-off-resonance optical lattice. Pairs of atoms are made to occupy the same well by varying the polarization of the trapping lasers, and then a near-resonant electric dipole is induced by an auxiliary laser. A controlled-NOT can be implemented by conditioning the target atomic resonance on a resolvable level shift induced by the control atom. Atoms interact only during logical oper...
February 24, 2005
We propose a scheme for scalable and universal quantum computation using diatomic bits with conditional dipole-dipole interaction, trapped within an optical lattice. The qubit states are encoded by the scattering state and the bound heteronuclear molecular state of two ultracold atoms per site. The conditional dipole-dipole interaction appears between neighboring bits when they both occupy the molecular state. The realization of a universal set of quantum logic gates, which i...
April 30, 2011
We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze sche...