July 10, 2009
Similar papers 5
February 4, 2014
Statistical systems on random networks can be formulated in terms of partition functions expressed with integrals by regarding Feynman diagrams as random networks. We consider the cases of random networks with bounded but generic degrees of vertices, and show that the free energies can be exactly evaluated in the thermodynamic limit by the Laplace method, and that the exact expressions can in principle be obtained by solving polynomial equations for mean fields. As demonstrat...
September 23, 2019
Random graphs undergo structural phase transitions that are crucial for dynamical processes and cooperative behavior of models defined on graphs. In this work we investigate the impact of a first-order structural transition on the thermodynamics of the Ising model defined on Erd\"os-R\'enyi random graphs, as well as on the eigenvalue distribution of the adjacency matrix of the same graphical model. The structural transition in question yields graph samples exhibiting condensa...
October 27, 2017
We propose a method for generalizing the Ising model in magnetic fields and calculating the partition function (exact solution) for the Ising model of an arbitrary shape. Specifically, the partition function is calculated using matrices that are created automatically based on the structure of the system. By generalizing this method, it becomes possible to calculate the partition function of various crystal systems (network shapes) in magnetic fields when N (scale) is infinite...
April 4, 2002
We develop a statistical mechanics approach for random networks with uncorrelated vertices. We construct equilibrium statistical ensembles of such networks and obtain their partition functions and main characteristics. We find simple dynamical construction procedures that produce equilibrium uncorrelated random graphs with an arbitrary degree distribution. In particular, we show that in equilibrium uncorrelated networks, fat-tailed degree distributions may exist only starting...
July 17, 1998
It has been known for a long time that the ground state problem of random magnets, e.g. random field Ising model (RFIM), can be mapped onto the max-flow/min-cut problem of transportation networks. I build on this approach, relying on the concept of residual graph, and design an algorithm that I prove to be exact for finding all the minimum cuts, i.e. the ground state degeneracy of these systems. I demonstrate that this algorithm is also relevant for the study of the ground st...
August 26, 2021
Approximating the partition function of the ferromagnetic Ising model with general external fields is known to be #BIS-hard in the worst case, even for bounded-degree graphs, and it is widely believed that no polynomial-time approximation scheme exists. This motivates an average-case question: are there classes of instances for which polynomial-time approximation schemes exist? We investigate this question for the random field Ising model on graphs with maximum degree $\Delta...
July 18, 2016
The analytical description of the dynamics in models with discrete variables (e.g. Ising spins) is a notoriously difficult problem, that can be tackled only under some approximation. Recently a novel variational approach to solve the stationary dynamical regime has been introduced by Pelizzola [Eur. Phys. J. B, 86 (2013) 120], where simple closed equations are derived under mean-field approximations based on the cluster variational method. Here we propose to use the same appr...
June 19, 2013
We present a new approach to a classical problem in statistical physics: estimating the partition function and other thermodynamic quantities of the ferromagnetic Ising model. Markov chain Monte Carlo methods for this problem have been well-studied, although an algorithm that is truly practical remains elusive. Our approach takes advantage of the fact that, for a fixed bond strength, studying the ferromagnetic Ising model is a question of counting particular subgraphs of a gi...
September 27, 2021
We consider a recently introduced generalization of the Ising model in which individual spin strength can vary. The model is intended for analysis of ordering in systems comprising agents which, although matching in their binarity (i.e., maintaining the iconic Ising features of `+' or `$-$', `up' or `down', `yes' or `no'), differ in their strength. To investigate the interplay between variable properties of nodes and interactions between them, we study the model on a complex ...
February 27, 2023
We utilise the graphon--a continuous mathematical object which represents the limit of convergent sequences of dense graphs--to formulate a general, continuous description of quantum spin systems in thermal equilibrium when the average co-ordination number grows extensively in the system size. Specifically, we derive a closed set of coupled non-linear Fredholm integral equations which govern the properties of the system. The graphon forms the kernel of these equations and the...