ID: 2305.04038

The sum-product problem for integers with few prime factors

May 6, 2023

View on ArXiv
Brandon Hanson, Misha Rudnev, Ilya Shkredov, Dmitrii Zhelezov
Mathematics
Number Theory
Combinatorics

It was asked by E. Szemer\'edi if, for a finite set $A\subset\mathbb{Z}$, one can improve estimates for $\max\{|A+A|,|A\cdot A|\}$, under the constraint that all integers involved have a bounded number of prime factors -- that is, each $a\in A$ satisfies $\omega(a)\leq k$. In this paper, answer Szemer\'edi's question in the affirmative by showing that this maximum is of order $|A|^{\frac{5}{3}-o(1)}$ provided $k\leq (\log|A|)^{1-\epsilon}$ for some $\epsilon>0$. In fact, this will follow from an estimate for additive energy which is best possible up to factors of size $|A|^{o(1)}$.

Similar papers 1

An improved bound on the sum-product estimate in $\mathbb{F}_{p}$

December 9, 2020

90% Match
Connor Paul Wilson
Combinatorics
Number Theory

We give an improved bound on the famed sum-product estimate in a field of residue class modulo $p$ ($\mathbb{F}_{p}$) by Erd\H{o}s and Szemeredi, and a non-empty set $A \subset \mathbb{F}_{p}$ such that: $$ \max \{|A+A|,|A A|\} \gg \min \left\{\frac{|A|^{15 / 14} \max \left\{1,|A|^{1 / 7} p^{-1 / 14}\right\}}{(\log |A|)^{2 / 7}}, \frac{|A|^{11 / 12} p^{1 / 12}}{(\log |A|)^{1 / 3}}\right\}, $$ and more importantly: $$\max \{|A+A|,|A A|\} \gg \frac{|A|^{15 / 14}}{(\log |A|)^{2 ...

Find SimilarView on arXiv

On the few products, many sums problem

December 1, 2017

89% Match
Brendan Murphy, Misha Rudnev, ... , Shteinikov Yurii N.
Combinatorics

We prove new results on additive properties of finite sets $A$ with small multiplicative doubling $|AA|\leq M|A|$ in the category of real/complex sets as well as multiplicative subgroups in the prime residue field. The improvements are based on new combinatorial lemmata, which may be of independent interest. Our main results are the inequality $$ |A-A|^3|AA|^5 \gtrsim |A|^{10}, $$ over the reals, "redistributing" the exponents in the textbook Elekes sum-product inequality a...

Find SimilarView on arXiv

A sum-product estimate in fields of prime order

April 16, 2003

89% Match
S. V. Konyagin
Number Theory

Let q be a prime, A be a subset of a finite field $F=\Bbb Z/q\Bbb Z$, $|A|<\sqrt{|F|}$. We prove the estimate $\max(|A+A|,|A\cdot A|)\ge c|A|^{1+\epsilon}$ for some $\epsilon>0$ and c>0. This extends the result of J. Bourgain, N. Katz, and T. Tao.

Find SimilarView on arXiv

Variations on the sum-product problem II

March 28, 2017

88% Match
Brendan Murphy, Oliver Roche-Newton, Ilya Shkredov
Combinatorics
Number Theory

This is a sequel to the paper arXiv:1312.6438 by the same authors. In this sequel, we quantitatively improve several of the main results of arXiv:1312.6438, and build on the methods therein. The main new results is that, for any finite set $A \subset \mathbb R$, there exists $a \in A$ such that $|A(A+a)| \gtrsim |A|^{\frac{3}{2}+\frac{1}{186}}$. We give improved bounds for the cardinalities of $A(A+A)$ and $A(A-A)$. Also, we prove that $|\{(a_1+a_2+a_3+a_4)^2+\log a_5 : a_i...

Find SimilarView on arXiv

Slightly improved sum-product estimates in fields of prime order

July 12, 2009

88% Match
Liangpan Li
Number Theory
Combinatorics

Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a nonempty subset of $\mathbb{F}_p$. In this paper we show that if $|A|\preceq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succeq|A|^{13/12};\] if $|A|\succeq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succapprox \min\{|A|^{13/12}(\frac{|A|}{p^{0.5}})^{1/12},|A|(\frac{p}{|A|})^{1/11}\}.\] These results slightly improve the estimates of Bourgain-Garaev and Shen. Sum-product estimates on differ...

Find SimilarView on arXiv

Variations on the Sum-Product Problem

December 22, 2013

88% Match
Brendan Murphy, Oliver Roche-Newton, Ilya D. Shkredov
Combinatorics

This paper considers various formulations of the sum-product problem. It is shown that, for a finite set $A\subset{\mathbb{R}}$, $$|A(A+A)|\gg{|A|^{\frac{3}{2}+\frac{1}{178}}},$$ giving a partial answer to a conjecture of Balog. In a similar spirit, it is established that $$|A(A+A+A+A)|\gg{\frac{|A|^2}{\log{|A|}}},$$ a bound which is optimal up to constant and logarithmic factors. We also prove several new results concerning sum-product estimates and expanders, for example, s...

Find SimilarView on arXiv

The Erd\H{o}s-Szemer\'edi problem on sum set and product set

February 17, 2004

88% Match
Mei-Chu Chang
Combinatorics

The basic theme of this paper is the fact that if $A$ is a finite set of integers, then the sum and product sets cannot both be small. A precise formulation of this fact is Conjecture 1 below due to Erd\H os-Szemer\'edi [E-S]. (see also [El], [T], and [K-T] for related aspects.) Only much weaker results or very special cases of this conjecture are presently known. One approach consists of assuming the sum set $A + A$ small and then deriving that the product set $AA$ is large ...

Find SimilarView on arXiv

An update on the sum-product problem

May 22, 2020

88% Match
Misha Rudnev, Sophie Stevens
Number Theory
Combinatorics

We improve the best known sum-product estimates over the reals. We prove that \[ \max(|A+A|,|AA|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,, \] for a finite $A\subset \mathbb R$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques. Furthermore, \[ |AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,. \] Besides, for a convex set $A$ we show that \[ |A+A|\geq |A|^{\frac{30}{19}-o(1)}\,. \] This paper ...

Find SimilarView on arXiv

On higher energy decompositions and the sum-product phenomenon

March 13, 2018

88% Match
George Shakan
Number Theory
Combinatorics

Let $A \subset \mathbb{R}$ be finite. We quantitatively improve the Balog-Wooley decomposition, that is $A$ can be partitioned into sets $B$ and $C$ such that $$\max\{E^+(B) , E^{\times}(C)\} \lesssim |A|^{3 - 7/26}, \ \ \max \{E^+(B,A) , E^{\times}(C, A) \}\lesssim |A|^{3 - 1/4}.$$ We use similar decompositions to improve upon various sum-product estimates. For instance, we show $$ |A+A| + |A A| \gtrsim |A|^{4/3 + 5/5277}.$$

Find SimilarView on arXiv

An explicit sum-product estimate in $\mathbb{F}_p$

February 26, 2007

88% Match
M. Z. Garaev
Number Theory

Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a non-empty subset of $\mathbb{F}_p.$ In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of $\max\{|A+A|, |AA|\}.$ In particular, our result implies that if $1<|A|\le p^{7/13}(\log p)^{-4/13},$ then $$ \max\{|A+A|, |AA|\}\gg \frac{|A|^{15/14}}{(\log|A|)^{2/7}} . $$

Find SimilarView on arXiv