March 5, 2012
Similar papers 3
January 11, 2009
In this paper, we study a class of stochastic processes, called evolving network Markov chains, in evolving networks. Our approach is to transform the degree distribution problem of an evolving network to a corresponding problem of evolving network Markov chains. We investigate the evolving network Markov chains, thereby obtaining some exact formulas as well as a precise criterion for determining whether the steady degree distribution of the evolving network is a power-law or...
March 21, 2003
We propose and investigate a unifying class of sparse random graph models, based on a hidden coloring of edge-vertex incidences, extending an existing approach, Random graphs with a given degree distribution, in a way that admits a nontrivial correlation structure in the resulting graphs. The approach unifies a number of existing random graph ensembles within a common general formalism, and allows for the analytic calculation of observable graph characteristics. In partic...
March 1, 2010
We consider the set of all graphs on n labeled vertices with prescribed degrees D=(d_1, ..., d_n). For a wide class of tame degree sequences D we prove a computationally efficient asymptotic formula approximating the number of graphs within a relative error which approaches 0 as n grows. As a corollary, we prove that the structure of a random graph with a given tame degree sequence D is well described by a certain maximum entropy matrix computed from D. We also establish an a...
November 23, 2021
Real-world networks evolve over time via additions or removals of vertices and edges. In current network evolution models, vertex degree varies or grows arbitrarily. A recently introduced degree-preserving network growth (DPG) family of models preserves vertex degree, resulting in structures significantly different from and more diverse than previous models ([Nature Physics 2021, DOI: 10.1038/s41567-021-01417-7]). Despite its degree preserving property, the DPG model is able ...
September 23, 2015
Let $F$ be a probability distribution with support on the non-negative integers. Four methods for generating a simple undirected graph with (approximate) degree distribution $F$ are described and compared. Two methods are based on the so called configuration model with modifications ensuring a simple graph, one method is an extension of the classical Erd\H{o}s-R\'{e}nyi graph where the edge probabilities are random variables, and the last method starts with a directed random ...
December 27, 2011
The interaction of distinct units in physical, social, biological and technological systems naturally gives rise to complex network structures. Networks have constantly been in the focus of research for the last decade, with considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Here we introduce and evaluate a dynamical process defi...
January 3, 2012
We propose a Markov chain method to efficiently generate 'surrogate networks' that are random under the constraint of given vertex strengths. With these strength-preserving surrogates and with edge-weight-preserving surrogates we investigate the clustering coefficient and the average shortest path length of functional networks of the human brain as well as of the International Trade Networks. We demonstrate that surrogate networks can provide additional information about netw...
August 30, 2013
Sampling from combinatorial families can be difficult. However, complicated families can often be embedded within larger, simpler ones, for which easy sampling algorithms are known. We take advantage of such a relationship to describe a sampling algorithm for the smaller family, via a Markov chain started at a random sample of the larger family. The utility of the method is demonstrated via several examples, with particular emphasis on sampling labelled graphs with given degr...
June 28, 2019
This paper presents a novel theoretical Monte Carlo Markov chain procedure in the framework of graphs. It specifically deals with the construction of a Markov chain whose empirical distribution converges to a given reference one. The Markov chain is constrained over an underlying graph, so that states are viewed as vertices and the transition between two states can have positive probability only in presence of an edge connecting them. The analysis is carried out on the basis ...
October 28, 2021
We consider the following common network analysis problem: given a degree sequence $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb N^n$ return a uniform sample from the ensemble of all simple graphs with matching degrees. In practice, the problem is typically solved using Markov Chain Monte Carlo approaches, such as Edge-Switching or Curveball, even if no practical useful rigorous bounds are known on their mixing times. In contrast, Arman et al. sketch Inc-Powerlaw, a novel and m...