April 10, 2014
Networks observed in the real world often have many short loops. This violates the tree-like assumption that underpins the majority of random graph models and most of the methods used for their analysis. In this paper we sketch possible research routes to be explored in order to make progress on networks with many short loops, involving old and new random graph models and ideas for novel mathematical methods. We do not present conclusive solutions of problems, but aim to encourage and stimulate new activity and in what we believe to be an important but under-exposed area of research. We discuss in more detail the Strauss model, which can be seen as the `harmonic oscillator' of `loopy' random graphs, and a recent exactly solvable immunological model that involves random graphs with extensively many cliques and short loops.
Similar papers 1
December 18, 2003
We discuss various aspects of the statistical formulation of the theory of random graphs, with emphasis on results obtained in a series of our recent publications.
January 29, 2016
I report on the development of a novel statistical mechanical formalism for the analysis of random graphs with many short loops, and processes on such graphs. The graphs are defined via maximum entropy ensembles, in which both the degrees (via hard constraints) and the adjacency matrix spectrum (via a soft constraint) are prescribed. The sum over graphs can be done analytically, using a replica formalism with complex replica dimensions. All known results for tree-like graphs ...
October 27, 2001
The problem of defining a statistical ensemble of random graphs with an arbitrary connectivity distribution is discussed. Introducing such an ensemble is a step towards uderstanding the geometry of wide classes of graphs independently of any specific model. This research was triggered by the recent interest in the so-called scale-free networks.
We introduce and analyse ensembles of 2-regular random graphs with a tuneable distribution of short cycles. The phenomenology of these graphs depends critically on the scaling of the ensembles' control parameters relative to the number of nodes. A phase diagram is presented, showing a second order phase transition from a connected to a disconnected phase. We study both the canonical formulation, where the size is large but fixed, and the grand canonical formulation, where the...
February 12, 2002
The random graph of Erdos and Renyi is one of the oldest and best studied models of a network, and possesses the considerable advantage of being exactly solvable for many of its average properties. However, as a model of real-world networks such as the Internet, social networks or biological networks it leaves a lot to be desired. In particular, it differs from real networks in two crucial ways: it lacks network clustering or transitivity, and it has an unrealistic Poissonian...
We present an analytical approach for describing spectrally constrained maximum entropy ensembles of finitely connected regular loopy graphs, valid in the regime of weak loop-loop interactions. We derive an expression for the leading two orders of the expected eigenvalue spectrum, through the use of infinitely many replica indices taking imaginary values. We apply the method to models in which the spectral constraint reduces to a soft constraint on the number of triangles, wh...
May 25, 2004
We study the family of network models derived by requiring the expected properties of a graph ensemble to match a given set of measurements of a real-world network, while maximizing the entropy of the ensemble. Models of this type play the same role in the study of networks as is played by the Boltzmann distribution in classical statistical mechanics; they offer the best prediction of network properties subject to the constraints imposed by a given set of observations. We giv...
Traditional random graph models of networks generate networks that are locally tree-like, meaning that all local neighborhoods take the form of trees. In this respect such models are highly unrealistic, most real networks having strongly non-tree-like neighborhoods that contain short loops, cliques, or other biconnected subgraphs. In this paper we propose and analyze a new class of random graph models that incorporates general subgraphs, allowing for non-tree-like neighborhoo...
September 8, 2014
The theory of random graphs goes back to the late 1950s when Paul Erd\H{o}s and Alfr\'ed R\'enyi introduced the Erd\H{o}s-R\'enyi random graph. Since then many models have been developed, and the study of random graph models has become popular for real-life network modelling such as social networks and financial networks. The aim of this overview is to review relevant random graph models for real-life network modelling. Therefore, we analyse their properties in terms of styli...
June 6, 2001
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the f...