March 16, 2016
We prove, in particular, that for any finite set of real numbers A with |A/A| \ll |A| one has |A-A| > |A|^{5/3 - o(1)}. Also we show that |3A| > |A|^{2-o(1)} in the case.
March 11, 2007
Let G be an arbitrary Abelian group and let A be a finite subset of G. A has small additive doubling if |A+A| < K|A| for some K>0. These sets were studied in papers of G.A. Freiman, Y. Bilu, I. Ruzsa, M.C.--Chang, B. Green and T.Tao. In the article we prove that if we have some minor restrictions on K then for any set with small doubling there exists a set Lambda, |Lambda| << K log |A| such that |A\cap Lambda| >> |A| / K^{1/2 + c}, where c > 0. In contrast to the previous res...
June 29, 2011
In this paper we show that for any $k\geq2$, there exist two universal constants $C_k,D_k>0$, such that for any finite subset $A$ of positive real numbers with $|AA|\leq M|A|$, $|kA|\geq \frac{C_k}{M^{D_k}}\cdot|A|^{\log_42k}.$
March 13, 2005
Let n(2,k) denote the largest integer n for which there exists a set A of k nonnegative integers such that the sumset 2A contains {0,1,2,...,n-1}. A classical problem in additive number theory is to find an upper bound for n(2,k). In this paper it is proved that limsup_{k\to\infty} n(2,k)/k^2 \leq 0.4789.
August 23, 2013
We show that if a finite, large enough subset A of an arbitrary abelian group satisfies the small doubling condition |A + A| < (log |A|)^{1 - epsilon} |A|, then A must contain a three-term arithmetic progression whose terms are not all equal, and A + A must contain an arithmetic progression or a coset of a subgroup, either of which of size at least exp^[ c (log |A|)^{delta} ]. This extends analogous results obtained by Sanders and, respectively, by Croot, Laba and Sisask in t...
January 27, 2019
Let $A\subset [1, 2]$ be a $(\delta, \sigma)$-set with measure $|A|=\delta^{1-\sigma}$ in the sense of Katz and Tao. For $\sigma\in (1/2, 1)$ we show that $$ |A+A|+|AA|\gtrapprox \delta^{-c}|A|, $$ for $c=\frac{(1-\sigma)(2\sigma-1)}{6\sigma+4}$. This improves the bound of Guth, Katz, and Zahl for large $\sigma$.
May 23, 2018
In this paper we prove some results on sum-product estimates over arbitrary finite fields. More precisely, we show that for sufficiently small sets $A\subset \mathbb{F}_q$ we have \[|(A-A)^2+(A-A)^2|\gg |A|^{1+\frac{1}{21}}.\] This can be viewed as the Erd\H{o}s distinct distances problem for Cartesian product sets over arbitrary finite fields. We also prove that \[\max\{|A+A|, |A^2+A^2|\}\gg |A|^{1+\frac{1}{42}}, ~|A+A^2|\gg |A|^{1+\frac{1}{84}}.\]
December 9, 2020
We give an improved bound on the famed sum-product estimate in a field of residue class modulo $p$ ($\mathbb{F}_{p}$) by Erd\H{o}s and Szemeredi, and a non-empty set $A \subset \mathbb{F}_{p}$ such that: $$ \max \{|A+A|,|A A|\} \gg \min \left\{\frac{|A|^{15 / 14} \max \left\{1,|A|^{1 / 7} p^{-1 / 14}\right\}}{(\log |A|)^{2 / 7}}, \frac{|A|^{11 / 12} p^{1 / 12}}{(\log |A|)^{1 / 3}}\right\}, $$ and more importantly: $$\max \{|A+A|,|A A|\} \gg \frac{|A|^{15 / 14}}{(\log |A|)^{2 ...
May 26, 2017
Using some new observations connected to higher energies, we obtain quantitative lower bounds on $\max\{|AB|, |A+C| \}$ and $\max\{|(A+\alpha)B|, |A+C|\}$, $\alpha \neq 0$ in the regime when the sizes of finite subsets $A,B,C$ of a field differ significantly.
May 6, 2003
Let A be a set of integers. For every integer n, let r_{A,2}(n) denote the number of representations of n in the form n = a_1 + a_2, where a_1 and a_2 are in A and a_1 \leq a_2. The function r_{A,2}: Z \to N_0 \cup {\infty} is the representation function of order 2 for A. The set A is called an asymptotic basis of order 2 if r_{A,2}^{-1}(0) is finite, that is, if every integer with at most a finite number of exceptions can be represented as the sum of two not necessarily dist...