June 7, 2016
Similar papers 3
February 19, 2015
In this note it is established that, for any finite set $A$ of real numbers, there exist two elements $a,b \in A$ such that $$|(a+A)(b+A)| \gg \frac{|A|^2}{\log |A|}.$$ In particular, it follows that $|(A+A)(A+A)| \gg \frac{|A|^2}{\log |A|}$. The latter inequality had in fact already been established in an earlier work of the author and Rudnev (arXiv:1203.6237), which built upon the recent developments of Guth and Katz (arXiv:1011.4105) in their work on the Erd\H{o}s dist...
April 11, 2019
Besides various asymptotic results on the concept of sum-product bases in $\mathbb{N}_0$, we consider by probabilistic arguments the existence of thin sets $A,A'$ of integers such that $AA+A=\mathbb{N}_0$ and $A'A'+A'A'=\mathbb{N}_0$.
November 23, 2012
Let $A$ be a finite subset of $\ffield$, the field of Laurent series in $1/t$ over a finite field $\mathbb{F}_q$. We show that for any $\epsilon>0$ there exists a constant $C$ dependent only on $\epsilon$ and $q$ such that $\max\{|A+A|,|AA|\}\geq C |A|^{6/5-\epsilon}$. In particular such a result is obtained for the rational function field $\mathbb{F}_q(t)$. Identical results are also obtained for finite subsets of the $p$-adic field $\mathbb{Q}_p$ for any prime $p$.
February 24, 2014
A variation on the sum-product problem seeks to show that a set which is defined by additive and multiplicative operations will always be large. In this paper, we prove new results of this type. In particular, we show that for any finite set $A$ of positive real numbers, it is true that $$\left|\left\{\frac{a+b}{c+d}:a,b,c,d\in{A}\right\}\right|\geq{2|A|^2-1}.$$ As a consequence of this result, it is also established that $$|4^{k-1}A^{(k)}|:=|\underbrace{\underbrace{A\cdots{A...
It was asked by E. Szemer\'edi if, for a finite set $A\subset\mathbb{Z}$, one can improve estimates for $\max\{|A+A|,|A\cdot A|\}$, under the constraint that all integers involved have a bounded number of prime factors -- that is, each $a\in A$ satisfies $\omega(a)\leq k$. In this paper, answer Szemer\'edi's question in the affirmative by showing that this maximum is of order $|A|^{\frac{5}{3}-o(1)}$ provided $k\leq (\log|A|)^{1-\epsilon}$ for some $\epsilon>0$. In fact, this...
May 31, 2011
This paper gives an improved sum-product estimate for subsets of a finite field whose order is not prime. It is shown, under certain conditions, that $$\max\{|A+A|,|A\cdot{A}|\}\gg{\frac{|A|^{12/11}}{(\log_2|A|)^{5/11}}}.$$ This new estimate matches, up to a logarithmic factor, the current best known bound obtained over prime fields by Rudnev (\cite{mishaSP}).
August 25, 2018
Let $F$ be a field and a finite $A\subset F$ be sufficiently small in terms of the characteristic $p$ of $F$ if $p>0$. We strengthen the "threshold" sum-product inequality $$|AA|^3 |A\pm A|^2 \gg |A|^6\,,\;\;\;\;\mbox{hence} \;\; \;\;|AA|+|A+A|\gg |A|^{1+\frac{1}{5}},$$ due to Roche-Newton, Rudnev and Shkredov, to $$|AA|^5 |A\pm A|^4 \gg |A|^{11-o(1)}\,,\;\;\;\;\mbox{hence} \;\; \;\;|AA|+|A\pm A|\gg |A|^{1+\frac{2}{9}-o(1)},$$ as well as $$ |AA|^{36}|A-A|^{24} \gg |A|^{73...
January 29, 2003
Let $A$ be a subset of a finite field $F := \Z/q\Z$ for some prime $q$. If $|F|^\delta < |A| < |F|^{1-\delta}$ for some $\delta > 0$, then we prove the estimate $|A+A| + |A.A| \geq c(\delta) |A|^{1+\eps}$ for some $\eps = \eps(\delta) > 0$. This is a finite field analogue of a result of Erdos and Szemeredi. We then use this estimate to prove a Szemeredi-Trotter type theorem in finite fields, and obtain a new estimate for the Erdos distance problem in finite fields, as well as...
May 17, 2012
For a subset A of a field F, write A(A + 1) for the set {a(b + 1):a,b\in A}. We establish new estimates on the size of A(A+1) in the case where F is either a finite field of prime order, or the real line. In the finite field case we show that A(A+1) is of cardinality at least C|A|^{57/56-o(1)} for some absolute constant C, so long as |A| < p^{1/2}. In the real case we show that the cardinality is at least C|A|^{24/19-o(1)}. These improve on the previously best-known exponen...
April 6, 2018
We give a new proof of the discretized ring theorem for sets of real numbers. As a special case, we show that if $A\subset\mathbb{R}$ is a $(\delta,1/2)_1$-set in the sense of Katz and Tao, then either $A+A$ or $A.A$ must have measure at least $|A|^{1-\frac{1}{68}}$