January 29, 2015
We give a partial answer to a conjecture of A. Balog, concerning the size of AA+A, where A is a finite subset of real numbers. Also, we prove several new results on the cardinality of A:A+A, AA+AA and A:A + A:A.
April 15, 2022
In this paper we start to investigate a new body of questions in additive combinatorics. The fundamental Cauchy--Davenport theorem gives a lower bound on the size of a sumset A+B for subsets of the cyclic group Zp of order p (p prime), and this is just one example of a large family of results. Our aim in this paper is to investigate what happens if we restrict the number of elements of one set that we may use to form the sums. Here is the question we set out to answer: given ...
June 16, 2008
The \emph{sum-product phenomenon} predicts that a finite set $A$ in a ring $R$ should have either a large sumset $A+A$ or large product set $A \cdot A$ unless it is in some sense "close" to a finite subring of $R$. This phenomenon has been analysed intensively for various specific rings, notably the reals $\R$ and cyclic groups $\Z/q\Z$. In this paper we consider the problem in arbitrary rings $R$, which need not be commutative or contain a multiplicative identity. We obtain ...
February 10, 2016
We improve a previous sum--products estimates in R, namely, we obtain that max{|A+A|,|AA|} \gg |A|^{4/3+c}, where c any number less than 5/9813. New lower bounds for sums of sets with small the product set are found. Also we prove some pure energy sum--products results, improving a result of Balog and Wooley, in particular.
June 5, 2018
The main result of this paper is the following: for all $b \in \mathbb Z$ there exists $k=k(b)$ such that \[ \max \{ |A^{(k)}|, |(A+u)^{(k)}| \} \geq |A|^b, \] for any finite $A \subset \mathbb Q$ and any non-zero $u \in \mathbb Q$. Here, $|A^{(k)}|$ denotes the $k$-fold product set $\{a_1\cdots a_k : a_1, \dots, a_k \in A \}$. Furthermore, our method of proof also gives the following $l_{\infty}$ sum-product estimate. For all $\gamma >0$ there exists a constant $C=C(\gamma...
November 23, 2020
For $p$ being a large prime number, and $A \subset \mathbb{F}_p$ we prove the following: $(i)$ If $A(A+A)$ does not cover all nonzero residues in $\mathbb{F}_p$, then $|A| < p/8 + o(p)$. $(ii)$ If $A$ is both sum-free and satisfies $A = A^*$, then $|A| < p/9 + o(p)$. $(iii)$ If $|A| \gg \frac{\log\log{p}}{\sqrt{\log{p}}}p$, then $|A + A^*| \geqslant (1 - o(1))\min(2\sqrt{|A|p}, p)$. Here the constants $1/8$, $1/9$, and $2$ are the best possible. The proof involves \em...
July 29, 2018
In this paper we obtain a new sum-product estimate in prime fields. In particular, we show that if $A\subseteq \mathbb{F}_p$ satisfies $|A|\le p^{64/117}$ then $$ \max\{|A\pm A|, |AA|\} \gtrsim |A|^{39/32}. $$ Our argument builds on and improves some recent results of Shakan and Shkredov which use the eigenvalue method to reduce to estimating a fourth moment energy and the additive energy $E^+(P)$ of some subset $P\subseteq A+A$. Our main novelty comes from reducing the estim...
April 13, 2009
Let A be an asymptotic basis for N and X a finite subset of A such that A\X is still an asymptotic basis. Farhi recently proved a new batch of upper bounds for the order of A\X in terms of the order of A and a variety of parameters related to the set X. He posed two questions concerning possible improvements to his bounds. In this note, we answer both questions.
March 19, 2019
Let $\mathbb{F}_q$ denote the finite field with $q$ elements where $q=p^l$ is a prime power. Using Fourier analytic tools with a third moment method, we obtain sum-product type estimates for subsets of $\mathbb{F}_q$. In particular, we prove that if $A\subset \mathbb{F}_q$, then $$|AA+A|,|A(A+A)|\gg\min\left\{q, \frac{|A|^2}{q^{\frac{1}{2}}} \right\},$$ so that if $A\ge q^{\frac{3}{4}}$, then $|AA+A|,|A(A+A)|\gg q$.
March 24, 2022
Given $h,g \in \mathbb{N}$, we write a set $X \subseteq \mathbb{Z}$ to be a $B_{h}^{+}[g]$ set if for any $n \in \mathbb{R}$, the number of solutions to the additive equation $n = x_1 + \dots + x_h$ with $x_1, \dots, x_h \in X$ is at most $g$, where we consider two such solutions to be the same if they differ only in the ordering of the summands. We define a multiplicative $B_{h}^{\times}[g]$ set analogously. In this paper, we prove, amongst other results, that there exists s...